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As an analogy of Lie algebra homology, we study homology theory of Lie superalgebras. Specifically,
we handle pre Lie superalgebra of multivector fields on Euclidean space with polynomial coefficients
whose super Lie bracket is given by the Schouten bracket. In order to apply combinatorics, we introduce
weights, especially double weight (w, h). Main result is that the Euler numbers are always equal to
zero for each (w, h) and each Betti number is zero provided that w ̸= h.
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1. Introduction

Well known de Rham cohomology group of a differentiable manifold M is a cohomol-
ogy group of the Lie algebra X(M) of smooth vector fields on M together with the
X(M)-module C∞(M) as coefficient. Similarly, the Gel’fand-Fuks cohomology theory is
a cohomology theory of infinite dimensional Lie algebras. There are many works on the
cohomology of related subject, for example, the Lie algebra of volume preserving vector
fields, the Lie algebra of formal Hamiltonian vector fields. The notion of these Lie algebra
(co)homology groups is easy to understand, but the calculations are hard to complete and
one of the reason is the infinity of dimensions. In order to reduce our computation to finite
dimensional case, we use an idea of “weight” (c.f. for instance, [5], [4], [3], [2]).

There are (co)homology theories of Lie superalgebras but few works of Z-graded
version. Among Poisson geometry researchers,

∑
ΛpT(M) with the Schouten bracket is

known as a prototype ofZ-graded (pre) Lie superalgebra and it is well-known that a 2-vector
field π is Poisson if and only if [π, π] = 0. This Poisson condition [π, π] = 0 is equivalent
to that ∂(π ∧ π) = 0 in superalgebra homology theory, and

√
ker(∂) (the square root

of cycles) is the space of Poisson structures in a formal sense and it seems there is some
possibility of studying Poisson structures in this direction.

∗1-1 Tegata, Akita City, Japan
†225 SimoOokubo, Sakura-ku, Saitama City, Japan
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Thus, in this note, we begin to study homology groups of pre Lie superalgebra including
the second homology. Since in several works of Lie algebra (co)homology theory, the notion
of weight plays important role, we will also introduce a notion of doubly weighted pre Lie
superalgebras in an appropriate situation.

First we recall the definition of Lie superalgebra and pre Lie superalgebra.

Definition 1.1 ((pre) Lie superalgebra). Suppose a real vector space g is graded by Z as
g =

∑
j∈Z

gj and has a bilinear operation [·, ·] satisfying

[gi, gj ] ⊂ gi+j (1.1)
[X,Y ] + (−1)xy[Y,X] = 0 where X ∈ gx and Y ∈ gy (1.2)
(−1)xz[[X,Y ], Z] + (−1)yx[[Y, Z], X] + (−1)zy[[Z,X], Y ] = 0 . (1.3)

Then we call g a pre (or Z-graded) Lie superalgebra.
A Lie superalgebra g is graded by Z2 as g = g[0] ⊕ g[1] and the condition (1.1) is

regarded as [g[1], g[1]] ⊂ g[0] in modulo 2 sense.

Remark 1.1. Super Jacobi identity (1.3) above is equivalent to the one of the following.

[[X,Y ], Z] = [X, [Y, Z]] + (−1)yz[[X,Z], Y ] (1.4)
[X, [Y, Z]] = [[X,Y ], Z] + (−1)xy[Y, [X,Z]] (1.5)

Suppose g =
∑
j∈Z

gj is a pre Lie superalgebra. Let g[0] =
∑

i is even

gi and g[1] =
∑

i is odd

gi.

Then g = g[0] ⊕ g[1] holds and this is a Lie superalgebra.

Example 1.1. Take an n-dimensional vector space V and split it as V = V0 ⊕ V1. Define
g[i] = {A ∈ gl(V ) | A(Vj) ⊂ Vi+j}, where gl(V ) is the space of endomorphisms of V .
For each A ∈ g[i] and B ∈ g[j], define [A,B] = AB−(−1)ijBA. Then gl(V ) = g[0]⊕g[1]
with this bracket is a Lie superalgebra.

More concretely, we take n = 2 and dimV[i] = 1 for i = 0, 1. Then g[0] =

[
∗ 0
0 ∗

]
and g[1] =

[
0 ∗
∗ 0

]
. If we define g0 =

[
a 0

0 −a

]
, g1 =

[
0 ∗
∗ 0

]
and g2 =

[
a 0

0 a

]
. Then gl(2) =

g0 ⊕ g1 ⊕ g2 is a pre Lie superalgebra.

We will introduce the notion of double weight in pre Lie superalgebras (cf. Definition
2.4) and our results in this note are the calculation of the Euler number and Betti numbers
of homology groups of double-weighted pre Lie superalgebras of special type.

• For general n, the Euler number of chain complex {C•,0,h} is 0 for each h. (Lemma 4.1)
• For general n, the Euler number of chain complex {C•,w,h} is 0 for each w and each h.

(Theorem 4.1)
• The Euler number of (C•,w,h, ∂V ) is 0 for each w and h. (Theorem 4.2)
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• Them-th Betti number of {C•,w,h} is 0 for each double weight (w, h) ifw 6= h. (Theorem
5.1)

• The first Betti number of {C•,w,h} is 0 for each double weight (w, h). (Theorem 5.2)

2. Preliminaries, Notations and Basic Facts

In a usual Lie algebra homology theory, m-th chain space is the exterior product Λmg of g
and the boundary operator essentially comes from the operation X ∧ Y 7→ [X,Y ].

Likewise, in the case of pre Lie superalgebras, "exterior algebra" is defined as the
quotient of the tensor algebra ⊗mg of g by the two-sided ideal generated by

X ⊗ Y + (−1)xyY ⊗X where X ∈ gx, Y ∈ gy , (2.1)

and we denote the equivalence class of X ⊗ Y by X∆Y . Since Xodd∆Yodd = Yodd∆Xodd
and Xeven∆Yany = −Yany∆Xeven hold, ∆mgk has a symmetric property for odd k and has
a skew-symmetric property for even k with respect to ∆.

Definition 2.1. Assume that the pre Lie superalgebra g acts on a module V as follows:
For each homogeneous ξ ∈ g there corresponds an element ξV ∈ End(V ) and satisfies
[ξ, η]V = ξV ◦ ηV − (−1)|ξ||η|ηV ◦ ξV where ξ ∈ g|ξ| and η ∈ g|η|. Then we call V a
g-module. We often write ξ · v for ξV (v).

Example 2.1. A pre Lie superalgebra g is itself a g-module by own bracket X ·Z = [X,Z].
Let X,Y ∈ g be homogeneous as X ∈ gx, Y ∈ gy . Then, (X ◦ Y − (−1)xyY ◦X) · Z =

[X,Y ] · Z holds and this is just Jacobi identity.

Suppose we have an exterior product Y1∆ · · ·∆Ym of Y1, . . . , Ym. Omitting i-th ele-
ment, we have Y1∆ · · ·∆Yi−1∆Yi+1∆ · · ·∆Ym. It is often denoted as Y1∆ · · · Ŷi · · ·∆Ym.
Here we denote it by Ŷm[i]. If we omit i-th and j-th elements, we denote the omitted product
by Ŷm[i, j].

Definition 2.2. Let V be a g-module. For integer m > 0, define Cm = ∆mg ⊗ V =∑
i1≤...≤im

gi1∆ · · ·∆gim ⊗V , which is called m-th chain space with coefficient in V . In the

case where m = 0, we define C0 = V .

We define a linear map ∂V : Cm → Cm−1 called (boundary homomorphism) by

∂V (Y1∆ · · ·∆Ym ⊗ v)

=
∑
i<j

(−1)
∑

s<j(1+yjys)+
∑

s<i(1+yiys)[Yj , Yi]∆Ŷm[i, j]⊗ v (2.2)

+ (−1)m+1
m∑
i=1

(−1)
∑

s>i(1+yiys)Ŷm[i]⊗ Yi · v (2.3)

for a decomposable element, where yi is the degree of homogeneous element Yi, i.e.,
Yi ∈ gyi

.
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We have the following basic fact.

Theorem 2.1. ∂V ◦ ∂V = 0 holds and we have m-th homology group denoted by

Hm(g, V ) = ker(∂V : Cm → Cm−1)/∂V (Cm+1) .

Remark 2.1. The first term of (2.2) is also expressed as∑
i<j

(−1)i−1+yi
∑

i<s<j ysY1∆ · · · Ŷi · · ·∆[Yi, Yj ]︸ ︷︷ ︸
j

∆ · · ·∆Ym ⊗ v . (2.4)

Remark 2.2. If g-action on V is trivial, namely Y · v = 0 for ∀Y ∈ g and ∀v ∈ V , then
(2.3) is always 0 and we may assume V = R. We call this module the trivial module. Thus,
when we essentially deal with the trivial module, the chain space Cm = ∆mg and ∂V is
(2.2) without v, which we denote ∂. It is clear that ∂ ◦ ∂ = 0 and we have the homology
groups

Hm(g,R) = ker(∂ : Cm → Cm−1)/∂(Cm+1) .

2.1. Homology groups weighted by the first grading

Assume that a g-module V is Z-graded, i.e, V =
∑
i

Vi, and the action satisfies gi · Vj ⊂

Vi+j .

Definition 2.3. We define a non-zero element in gi1∆ · · ·∆gim⊗Vj to have i1+· · ·+im+j

as the (first) weight. Define the subspace of Cm by

Cm,w =
∑

i1≤...≤im∑m
s=1 is+j=w

gi1∆ · · ·∆gim ⊗ Vj ,

which is the direct sum of different types of spaces of elements with weight w.

Proposition 2.1. The (first) weight w is preserved by ∂V , i.e., we have ∂V (Cm,w) ⊂
Cm−1,w. Thus, for a fixed w, we have w-weighted homology groups

Hm,w(g, V ) = ker(∂V : Cm,w → Cm−1,w)/∂(Cm+1,w) .

When V is the trivial module, we have

Hm,w(g,R) = ker(∂ : Cm,w → Cm−1,w)/∂(Cm+1,w) .

2.2. Double-weighted homology groups

Definition 2.4 (Double weight). Assume that each subspace gi of a given pre Lie superal-
gebra g is directly decomposed into subspaces gi,j as gi =

∑
j

gi,j and satisfies

[X,Y ] ∈ gi1+i2,j1+j2 for each X ∈ gi1,j1 , Y ∈ gi2,j2 . (2.5)
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We say such a pre Lie superalgebra is double-weighted.
Assume that g-module V is also double-weighted Vi,j and satisfies gi,j · Vi′,j′ ⊂

Vi+i′,j+j′ .
Then we define double-weighted m-th chain space by

Cm,w,h =
∑

i1≤...≤im ,
∑m

s=1 is+i0=w∑m
s=1 hs+h0=h

gi1,h1∆ · · ·∆gim,hm ⊗ Vi0,h0

Proposition 2.2. The double weight (w, h) is preserved by ∂V , i.e., we have ∂V (Cm,w,h) ⊂
Cm−1,w,h. Thus, we have (w, h)-weighted homology groups

Hm,w,h(g, V ) = ker(∂V : Cm,w,h → Cm−1,w,h)/∂(Cm+1,w,h) .

When V is the trivial module, then we have

Hm,w,h(g,R) = ker(∂ : Cm,w,h → Cm−1,w,h)/∂(Cm+1,w,h) .

3. Pre Lie Superalgebras with the Schouten Bracket

A prototype of pre Lie superalgebra is the exterior algebra of the sections of exterior power
of tangent bundle of a differentiable manifold M . We denote the i-th exterior bundle by
ΛiT(M) and for the sake of simplicity we express its space of sections by the same notation.
Let n = dimM and put

g =

n∑
i=1

ΛiT(M) =

n−1∑
i=0

gi , where gi = Λi+1T(M)

with the Schouten bracket.
There are several ways of defining the Schouten bracket, namely, axiomatic explanation,

sophisticated one using Clifford algebra or more direct ones (cf. [6]). Here in the context of
Lie algebra homology theory, we introduce the Schouten bracket as follows:

Definition 3.1 (Schouten bracket). Let ∂ denote the boundary operator for the Lie algebra
of vector fields on M . For A ∈ ΛaT(M) and B ∈ ΛbT(M), we define a binary operation
[·, ·] by the following and call [A,B] the Schouten bracket of A and B.

(−1)a+1[A,B] = ∂(A ∧B)− (∂A) ∧B − (−1)aA ∧ ∂B . (3.1)

Thus the Schouten bracket measures how far from the derivation the boundary operator
∂ is.

The first chain space is C1 = g =

n∑
p=1

ΛpT(M). The second chain space is given by

C2 = g∆g =
∑
p≤q

ΛpT(M)∆ΛqT(M)

=Λ1T(M)∆Λ1T(M) + Λ1T(M)∆Λ2T(M) + · · ·
+ Λ2T(M)∆Λ2T(M) + Λ2T(M)∆Λ3T(M) + · · · .
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Remark 3.1. Let π ∈ Λ2T(M). Then π∆π ∈ Λ2T(M)∆Λ2T(M) ⊂ C2 and ∂(π∆π) =

[π, π] ∈ C1. Thus, π ∈ Λ2T(M) is Poisson if and only if ∂(π∆π) = 0, and we express it by
π ∈

√
ker(∂) symbolically. It will be interesting to study

√
ker(∂) and also interesting to

study specific properties of Poisson structures in
√
∂(C3), which come from the boundary

image of the third chain space C3.

In this pre Lie superalgebra, possible weights are non-negative integers. When weight
is 0, the chain spaces with trivial action are simply given by Cm,0 = ∆mg0 = ∆mT(M)

and the homology is the Lie algebra homology of vector fields for m = 1, . . . , n. For lower
weights 1 or 2, the chain spaces are given by

Cm,1 = ∆m−1g0∆g1 = ∆m−1T(M)∆Λ2T(M) for m = 1, . . . ,

Cm,2 = ∆m−1g0∆g2 ⊕∆m−2g0∆
2g1

= ∆m−1T(M)∆Λ3T(M)⊕∆m−2T(M)∆2Λ2T(M) for m = 1, . . . .

Remark 3.2. In particular, C1,2 = Λ3T(M), C2,2 = T(M)∆Λ3T(M) ⊕
Λ2T(M)∆Λ2T(M), C3,2 = T(M)∆T(M)∆Λ3T(M) ⊕ T(M)∆Λ2T(M)∆Λ2T(M).
Thus, by introducing weight, the chain spaces become smaller and computations become a
little clear and easier.

Given an integer w for a weight, and the sequence 0 ≤ i1 ≤ · · · ≤ im ≤ n − 1

with
∑m

s=1 is = w, putting js = 1 + is one obtains a new sequence of positive integers
satisfying 1 ≤ j1 ≤ · · · ≤ jm ≤ n with

∑m
s=1 js = m + w. This latter sequence

jm, . . . , j1 describes a Young diagram of area w + m and length m. From each Young
diagram {jm, . . . , j1}, looking at the ’multiplicity’ji in ∆jiΛiT (M), we obtain a sequence
[k1, k2, . . . , kn] consisting of ki = #{s|js = i}.

Remark 3.3 (3 ways of Young diagram). A Young diagramλ is a non-decreasing sequence
of positive integers, say a1, . . . , am. For instance, is a sequence of 4, 1, 1, here we
denote it as t(4, 1, 1) where superscript t means “traditional expression”. As explained
above, when we focus on the multiplicity of elements, we have another sequence, in the
present example above, 2, 0, 0, 1 and we denote it by [2, 0, 0, 1]. Sometimes we have to write
many 0 in this expression. The 3rd expression of Young diagram is measuring the height of
each column from left to right. Again in the example, we have a sequence 3, 1, 1, 1 and denote
it by 〈3, 1, 1, 1〉 and call it tower (vertical) decomposition. It is known in general that the
sequence of tower decomposition ofλ is just the conjugate ofλ, i.e, 〈λ〉 = t(conjugate of λ).
In detail of relations of those, refer to [6].

Remark 3.4. We remark that m does not stop at dimM in general because of the property
of our new “wedge product”4.

4. Euler Number of Homology Groups of Concrete pre Lie Superalgebras

In the previous section, we defined pre Lie superalgebras
n∑

i=1

ΛiT(M) for differentiable

manifold M . In this section, we treat the Euclidean space M = Rn with the Cartesian
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coordinates x1, . . . , xn. Then, we consider a pre Lie super subalgebra consisting of multi
vector fields with polynomial coefficients. We define gi,j as follows.

gi,j = Xi+1
j+1(R

n) = {(i+ 1)-multi vector fields with (j + 1)-homogeneous polynomials} .

We see easily that [gi1,j1 , gi2,j2 ] ⊂ gi1+i2,j1+j2 and we get a double-weighted pre Lie
superalgebra. The spaces gi,j are finite dimensional, precisely dim gi,j =

(
n−1+j+1

n−1

)(
n

i+1

)
.

In the following subsection, we study chain space of Cm,w,h.

4.1. Double-weighted chain space Cm,w,h

The chain space Cm,w,h =
∑

Xi1
h1
(Rn)∆ · · ·∆Xim

hm
(Rn) of the double-weighted pre Lie

superalgebra has the following properties.

(1) (is)
m
s=1 are non-descending sequences of sum w +m and length m. Since each entry

is is less than n+ 1, we may count the multiplicity of them as ka = #{s | is = a} or
denote it by a :ka, and get [k1, . . . , kn], i.e.,

(i1, . . . , im) = (1, . . . , 1︸ ︷︷ ︸
k1

, . . . , n, . . . , n︸ ︷︷ ︸
kn

) = (1:k1, . . . , n :kn) = [k1, . . . , kn] ,

we have
n∑

s=1

ks = m , and
n∑

s=1

sks = w +m .

Now denote Xi1
h1
(Rn)∆ · · ·∆Xim

hq
(Rn) by X

(i1≤···≤im)
(h1,...,hm) = X

[k1,...,kn]
(h1,...,hm).

(2) Each hs is non-negative integer and
∑m

s=1(hs−1) = h holds. In order to apply an idea
of Young diagrams of positive integers, we have to shift each hs by 1 as hs + 1.

Then the second weight condition implies
∑m

s=1(hs + 1) = h + 2m and we
may consider the Young diagrams of area w + 2m and length m. To recover original
sequences, we shift them back by −1 simultaneously. Obtained sequences from these
Young diagrams are ordered ones, so to obtain all of the original sequences of weights,
we need permutations of them.

(3) Assume ip−1 < ip = · · · = iq = k < iq+1. Then we may relabel so thathp ≤ · · · ≤ hq ,
and we write

Xk
hp
(Rn)∆ · · ·∆Xk

hq
(Rn) = SubC(k:(q−p+1))(hp, . . . , hq)

(4) Assume ip = · · · = iq and hp = · · · = hq . Then, we use the notation

X
ip
hp
(Rn)∆ · · ·∆X

iq
hq
(Rn) = SubC(ip:(q−p+1))(hp, . . . , hp︸ ︷︷ ︸

q−p+1

) = ∆q−p+1X
ip
hp
(Rn)

• If ip is even, then ∆q−pX
ip
hp
(Rn) is a symmetric space and its dimension is((n

ip

)(
n−1+hp

n−1

)
− 1 + q − p+ 1

q − p+ 1

)
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• If ip is odd, then ∆q−p+1X
ip
hp
(Rn) is a skew-symmetric space and its dimension

is ((n
ip

)(
n−1+hp

n−1

)
q − p+ 1

)
In particular, if q − p+ 1 >

(
n
ip

)(
n−1+hp

n−1

)
then the space is 0-dimensional.

Introducing a new notation

SubC
(k:ℓ)
[u] = ⊕∑ℓ

s=1(hs−1)=u

SubC(k:ℓ)(h1, . . . , hℓ) , (4.1)

and using the notations above we have

Proposition 4.1.

Cm,w,h =
∑

∑n
i=1 ki=m∑n

i=1 iki=w+m∑n
i=1 ui=h

SubC
(1:k1)
[u1]

∆ · · ·∆SubC
(n:kn)
[un]

(4.2)

Proposition 4.2. Assume k is an odd integer. Let [ℓ1, ℓ2, . . . ] be the sequence of multiplic-
ities of h1 + 1, . . . , hm + 1, that is, ℓb = #{i | hi + 1 = b}. Then

SubC(k:m)(h1, . . . , hm) = ∆ℓ1Xk
0∆

ℓ2Xk
1∆ · · ·

holds. If an inequality ℓi ≤ dimXk
i−1 =

(
n
k

)(
n−1+i−1

n−1

)
holds for each i, then

SubC(k:m)(h1, . . . , hm) is non trivial, and whose dimension is
∏
i

((n
k

)(
n−1+i−1

n−1

)
ℓi

)
.

Proof. Since k is odd, each space ∆ℓiXk
i−1 is skew-symmetric and the proposition holds

comparing the dimension of Xk
i−1.

The requirements on the chain space Cm,w,h in (4.2) are w =
∑m

s=1(s − 1)ks and∑m
s=1 ks = m for the first weight. Thus, if w = 0, then [k1, k2, . . . ] = [m, 0, . . . ] or if

w = 1, then [k1, k2, . . . ] = [m−1, 1, 0, . . . ]. Ifw = 2, then [k1, k2, . . . ] = [m−2, 2, 0, . . . ]
or [m− 1, 0, 1, 0, . . . ].

From the definition of the second weight h, we see that
m∑
s=1

hs = m+h, and som ≥ −h,

more precisely, m ≥ max(−h, 1). About the upper bound of the range of m, we discuss
later.

4.1.1. Case where the first weight w = 0

In this subsection, we assume w = 0. Then the product by ∆ is always skew-symmetric and
we see that

Cm,0,h = SubC
(1:m)
[h] =

∑
∑

t ℓt=m∑
t tℓt=2m+h

∆ℓ1X1
0∆

ℓ2X1
1∆ · · · .
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We have some restrictions on h and the range of m from the proposition 4.2.

Proposition 4.3. Assume w = 0 and Cm,0,h 6= 0.
Then h ≥ − dimX1

0, and max(1,−h) ≤ m ≤ h+ 2dimX1
0 + dimX1

1 holds.

Proof. We follow the notation above, then∑
t

ℓt = m (4.3)∑
t

tℓt = 2m+ h (4.4)

Since (4.4) − 2(4.3), we have −ℓ1 +
∑
s>2

(s − 2)ℓs = h, and
∑
s>2

(s − 2)ℓs = h + ℓ1, thus

we have 0 ≤ h+ ℓ1. Applying the requirement ℓ1 ≤ dimX1
0, we have 0 ≤ h+ dimX1

0.
From (4.4) − 3(4.3), we have −2ℓ1 − ℓ2 +

∑
s>3(s − 3)ℓs = −m + h, thus 0 ≤∑

s>3(s − 3)ℓs = −m + h + 2ℓ1 + ℓ2. Applying the requirement ℓ2 ≤ dimX1
1, we have

m− h ≤ 2 dimX1
0 + dimX1

1.

Remark 4.1. In the previous proposition, we have an upper bound of m. If we use the third
or higher comparison, we have more sharp estimate of upper bound of m.

Example 4.1. Assuming n = 2, we study the chain complex of

· · · ← Cm−1,0,h
∂←−Cm,0,h

∂←−Cm+1,0,h
∂←−· · ·

where

Cm,0,h =
∑

∑
t ℓt=m∑

t tℓt=2m+h

∆ℓ1X1
0∆

ℓ2X1
1∆ · · · ,

and denote dm = dimCm,0,h the dimension of m-chain space, rm = dim ∂(Cm+1,0,h) for
the rank (dim ∂ symbolically). The m-Betti number is defined by dm − (rm−1 + rm).

Assume h = −2. Then m starts from 2. The possible Young diagrams are characterized
by area 2m− 2 and length m. We see that the Young diagram 〈m,m− 2〉 = [12, 2m−2] is
the only possible candidate for our chain space. Thus Cm,0,−2 = ∆2X1

0(R2)∆m−2X1
1(R2)

and we get dimension, rank and Betti number for each space as in the table 4.1 left: The
Euler number is 0.

Assume h = −1. The area is 2m− 1, and the good Young diagrams are 〈m,m− 1〉 or
〈m,m− 2, 1〉 and so [11, 2m−1] or [12, 2m−3, 31]. Thus

Cm,0,−1 = X1
0(R2)∆m−1X1

1(R2)⊕∆2X1
0(R2)∆m−3X1

1(R2)∆X1
2(R2) .

So we get dimension, rank and Betti number for each space as in the table 4.1 right: The
Euler number is 0.

Assume h = 0. The area is 2m and good Young diagrams are 〈m,m〉, 〈m,m −
1, 1〉, 〈m,m − 2, 1, 1〉 or 〈m,m − 2, 2〉 and so [10, 2m], [11, 2m−2, 31], [12, 2m−3, 41] or
[12, 2m−4, 32]. Thus

Cm,0,0 = ∆mX1
1(R2)⊕ X1

0(R2)∆m−2X1
1(R2)∆X1

2(R2)
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Table 1. Left is w = 0 and h = −2, Right is w = 0 and h = −1

m 2 3 4 5 6
dim 1 4 6 4 1
dim ∂ 1 3 3 1 0
Betti 0 0 0 0 0

m 1 2 3 4 5 6 7
dim 2 8 18 32 38 24 6
dim ∂ 2 6 12 20 18 6 0
Betti 0 0 0 0 0 0 0

⊕∆2X1
0(R2)∆m−3X1

1(R2)∆X1
3(R2)⊕∆2X1

0(R2)∆m−4X1
1(R2)∆2X1

2(R2) .

When h = 0, zero-th chain space is defined and C0,0,0 = R. Thus, the dimension for each
space and the rank of ∂ are as follows: the Euler number is 0. and we get dimension, rank
and Betti number for each space as in the table below:

Table 2. w = 0 and h = 0

m 0 1 2 3 4 5 6 7 8
dim 1 4 18 60 120 156 134 68 15
dim ∂ 0 4 14 46 74 80 54 13 0
Betti 1 0 0 0 0 2 0 1 2

We discussed in [6] the Euler numbers of Lie algebra homology groups of given weight
w and homogeneityh of Poisson tensor where we dealt Young diagrams of areaw+(2−h)m
with length m. By discussion there, we have the following result.

Lemma 4.1. For general n, the Euler number of chain complex {C•,0,h} is 0.

Proof. We use the notations in [6]. Since

Cm,0,h =
∑

∑
t ℓt=m∑

t tℓt=2m+h

∆ℓ1X1
0∆

ℓ2X1
1∆ · · · ,

we have to deal with Young diagrams ∇2m+h
m of area 2m + h with length m. A recursive

formula

∇2m+h
m = B · ∇2m+h−1

m−1 t Tm∇m+h
m = Tm · Tm tB · ∇2m−1

m−1 (4.5)

holds. If h = 0 then we have

∇2m
m = Tm · Tm tB · ∇2m−1

m−1 .

Thus, dimCm,0,0 =
(
dimX1

1
m

)
+

∑
λ∈∇2m−1

m−1

dim(B · λ).
∑
m>0

(−1)m
(
dimX1

1
m

)
= −1 is well-

known.
When we denote each λ ∈ ∇2m−1

m−1 by [ℓ1, ℓ2, . . . ],
∑
t

ℓt = m−1 and
∑
t

tℓt = 2m−1

must be satisfied.B ·λ = [1+ℓ1, ℓ2, . . . ] and so dim(B ·λ) =
(
dimX1

0
1+ℓ1

)(
dimX1

1
ℓ2

)(
dimX1

2
ℓ3

)
. . ..

About the alternating sum of the second term, we have∑
m>0

(−1)m
∑

λ∈∇2m−1
m−1

dim(B · λ)
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=
∑
m>0

(−1)m
∑

∑
t ℓt=m−1∑

t tℓt=2m−1

(
dimX1

0
1+ℓ1

)(
dimX1

1
ℓ2

)(
dimX1

2
ℓ3

)
. . .

=
∑

(−1)1+
∑

t ℓt
∑

2(1+
∑

t ℓt)=1+
∑

t tℓt

(
dimX1

0
1+ℓ1

)(
dimX1

1
ℓ2

)(
dimX1

2
ℓ3

)
. . .

=
∑

(−1)ℓ2
(
dimX1

1
ℓ2

) ∑
2(1+

∑
t ℓt)=1+

∑
t tℓt

(−1)1+
∑

t ̸=2 ℓt
(
dimX1

0
1+ℓ1

)(
dimX1

2
ℓ3

)
. . .

= 0 because ℓ2 is free in the condition 2(1 +
∑
t

ℓt) = 1 +
∑
t

tℓt.

So,
∑
m>0

(−1)mCm,0,0 =
∑
m>0

(−1)m
(
dimX1

1
m

)
= −1. When h = 0, then 0-th chain space

C0,0,0 is defined and trivially 1-dimensional. Thus, the Euler number
∑
m≥0

(−1)mCm,0,0 = 0.

When h < 0 then (4.5) says that ∇2m+h
m = B · ∇2m+h−1

m−1 and we follow the same
discussion about dim(B · λ) and get the same conclusion that the Euler number is 0.

When h > 0 then (4.5) says that∇2m+h
m = B ·∇2m+h−1

m−1 tTm∇m+h
m and we know the

alternating sum is 0 of the first term. Concerning the second term, take an arbitrary element
λ = [ℓ1, ℓ2, . . . ] ∈ ∇m+h

m with the conditions
∑
s

ℓs = m and
∑
s

sℓs = m + h. Then

Tm · λ = [0, ℓ1, ℓ2, . . . ] and so∑
m

(−1)m
∑

λ∈∇m+h
m

dim(Tm · λ)

=
∑
m

(−1)m
∑

λ∈∇m+h
m

(
dimX1

1
ℓ1

)(
dimX1

2
ℓ2

)
· · · =

∑
∑

s ℓs=
∑

s sℓs−h

(−1)
∑

s ℓs
(
dimX1

1
ℓ1

)(
dimX1

2
ℓ2

)
. . .

=
∑
ℓ1

(−1)ℓ1
(
dimX1

1
ℓ1

) ∑
∑

s ℓs=
∑

s sℓs−h

(−1)
∑

s̸=1 ℓs
(
dimX1

2
ℓ2

)(
dimX1

3
ℓ3

)
. . .

= 0 .

4.1.2. Case where the first weight w = 1

Assume w = 1. Then using Corollary 4.1 directly, we have

Cm,1,h =
∑

∑m
s=1(hs+1)=h+2m

X
[m−1,1,0,... ]
(h1,...,hm) =

∑
hm

SubC
(1:(m−1))
[h+1−hm] ∆SubC

(2:1)
[hm]

and SubC(1:(m−1))
[h+1−hm] is nothing but Cm−1,0,h+1−hm . Thus, we have the following proposition

which gives a rule for an expression of Cm,1,h by lower weight chain spaces Cm−1,0,h′ .

Proposition 4.4. The chain complex {C•,1,h} is non-trivial if h ≥ −(1 + dimX1
0), and

Cm,1,h =
∑
h′

Cm−1,0,h−h′+1∆X2
h′ for m ≥ 1 . (4.6)

Each degree m of the chain complex is bounded from above by h+2+2dimX1
0+dimX1

1.
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For Rn with n general, the Euler number of the chain complex {C•,1,h} is always 0 for
each h.

Proof. From the definition of double weight, Cm,1,h =
∑

Xa1

b1
∆ · · ·∆Xam

bm
where 1 ≤

a1 ≤ · · · ≤ am ≤ n with
m∑
i=1

(ai − 1) = 1, and integers (bi ≥ 0) with
m∑
i=1

(bi − 1) = h.

We see directly that ai − 1 = 0 for i < m and am − 1 = 1.
m∑
i=1

(bi − 1) = h implies

m−1∑
i=1

(bi − 1) = h− bm + 1. Thus, we get (4.6).

(4.6) implies dimCm,1,h =
∑
h′

dimCm−1,0,h−h′+1 dimX2
h′ for m ≥ 1.

∑
m

(−1)m dimCm,1,h =
∑
m≥1

(−1)m
∑
h′

dimCm−1,0,h−h′+1 dimX2
h′

=−
∑
h′

dimX2
h′

∑
m≥1

(−1)m−1 dimCm−1,0,h−h′+1

= 0 using Lemma 4.1.

4.1.3. Case where the first weight w = 2

Assume w = 2. Again, using Corollary 4.1, we have

Cm,2,h =
∑

∑m
s=1(hs+1)=h+2m

X
[m−1,0,1,0,... ]
(h1,...,hm) +

∑
∑m

s=1(hs+1)=h+2m

X
[m−2,2,0,... ]
(h1,...,hm)

=
∑

SubC
(1:(m−1))
[h+1−hm] ∆X3

hm
+ SubC

(1:(m−2))
[h−h′] ∆SubC

(2:2)
[h′] .

Thus, we have the following proposition which gives a rule of expression of Cm,2,h by lower
weight chain spaces.

Proposition 4.5. The chain complex {C•,2,h} is non-trivial if h ≥ −(2 + dimX1
0), and

Cm,2,h =
∑
h′

Cm−1,0,h+1−h′∆X3
h′ t

∑
a≤b

Cm−2,0,h+2−a−b∆X2
a∆X2

b for m ≥ 2 ,

(4.7)
and
C1,2,h =X3

h+1 . (4.8)

The range of degreem of the chain complex has an upper bound h+4+2dimX1
0+dimX1

1.

We can apply Lemma 4.1 to the chain complex w = 2, we have

Proposition 4.6. For general n, the Euler number of chain complex {C•,2,h} is always 0
for each h.
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Proof. We make the alternating sum of the dimensions of chain spaces. First we sum up
the terms which involve X3

• as follows:

A =(−1)1 dimX3
h+1 +

∑
m≥2

(−1)m
∑
h′

dimCm−1,0,h+1−h′ dimX3
h′

=−
∑
h′

dimX3
h′

∑
m≥0

(−1)m dimCm,0,h+1−h′ = 0 using Lemma 4.1.

The rest is

B =
∑
m≥2

(−1)m
∑
a≤b

dimCm−2,0,h+2−a−b dim(X2
a∆X2

b)

=
∑
a≤b

dim(X2
a∆X2

b)
∑
m≥2

(−1)m−2 dimCm−2,0,h+2−a−b = 0 using again Lemma 4.1.

4.1.4. Case where the first weight is general

Inspired by Propositions 4.4 and 4.6, we have the following general result which include
those propositions as special cases.

Theorem 4.1. For general n and for general first weight w, the range of degree m of the
non-trivial chain complex Cm,w,h is upper bounded as follows:

m ≤ h+ 2w + 2dimX1
0 + dimX1

1 , (4.9)

and the Euler number of chain complex {C•,w,h} is 0 for each w and h.

Proof. We have already seen that the above is valid for w = 0, 1, 2 in Propositions 4.3, 4.4
and 4.5. So we may assume w > 2 and m > 0. First, we prove (4.9) by induction. Assume
(4.9) holds for each w with w < Ω. From the definition of chain space,

Cm,Ω,h =
∑

Xa1

b1
∆ · · ·∆Xam

bm
(4.10)

m∑
i=1

(ai − 1) = Ω and 1 ≤ a1 ≤ · · · ≤ am ≤ n = dimM , (4.11)

m∑
i=1

(bi − 1) = h where bi ≥ 0 . (4.12)

From (4.11) and (4.12), we have
m−1∑
i=1

(ai−1) = Ω−(am−1) and
m−1∑
i=1

(bi−1) = h−(bm−1),

and we see that Cm,Ω,h =
∑

Cm−1,Ω+1−am,h+1−bm∆Xam

bm
. Cm,Ω,h is non-trvial if and

only if some Cm−1,Ω+1−am,h+1−bm is non-trivial. We may assume that Ω > 2. Then
am > 1 holds, namely Ω+1−am ≤ Ω−1 holds and satisfies the assumption of induction.
Thus,

m− 1 ≤ h+ 1− bm + 2(Ω + 1− am) + 2 dimX1
0 + dimX1

1
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≤ h+ 1 + 2(Ω + 1− 2) + 2 dimX1
0 + dimX1

1

= h− 1 + 2Ω + 2dimX1
0 + dimX1

1

imply (4.9) holds for Ω.
We use the notation (4.1). From Corollary 4.1, the chain space is written by

Cm,w,h = ⊕∑n
i=1 ki=m∑n

i=1 iki=w+m∑n
i=1 ui=h

SubC
(1:k1)
[u1]

∆ · · ·∆SubC
(n:kn)
[un]

.

The first component SubC(1:k1)
[u1]

is equal to the chain space Ck1,0,u1
with the first weight 0.

Thus∑
m>0

(−1)m dimCm,w,h

=
∑

∑n
i=1(i−1)ki=w

(−1)
∑n

s=1 ks

∑
uj

dimCk1,0,u1
dim

(
SubC

(2:k2)
[u2]

∆ · · ·∆SubC
(n:kn)
[un]

)
=

∑
∑n

i=1(i−1)ki=w

(−1)
∑n

s=2 ks

∑
uj

∑
k1

(−1)k1 dimCk1,0,u1 dim
(
SubC

(2:k2)
[u2]

∆ · · ·∆SubC
(n:kn)
[un]

)
.

Here, we used that the condition
n∑

i=1

(i − 1)ki = w does not involve k1. Now we use

Lemma 4.1 and obtain
=

∑
∑n

i=1(i−1)ki=w

(−1)
∑n

s=2 ks

∑
uj

0 = 0 .

Remark 4.2. The pre Lie superalgebra g = X1(M)⊕ · · · ⊕ Xn(M) is the one we mainly
dealt so far. g = X0(M)⊕X1(M)⊕· · ·⊕Xn(M) is a pre Lie superalgebra, which includes
g as a sub superalgebra, or extended algebra of g. Taking M = Rn again, we consider the
chain spaces coming from g defined by

Cm+1,w,h =
∑

X0
h0
(Rn)∆Xi1

h1
(Rn)∆ · · ·∆Xim

hm
(Rn)

where (0 − 1) +

m∑
s=1

(is − 1) = w and
m∑
s=0

(hs − 1) = h. We see easily the following

proposition.

Proposition 4.7. ∂(Cm+1,w,h) ⊂ Cm,w,h and have another double-weighted homology
groups. The Euler number of the chain complex {C•,w,h} is 0 .

4.2. Homology group with representation

In this subsection, we consider a natural representation of g = X1(M) ⊕ · · · ⊕ Xn(M)

for general manifold M . Since the Schouten bracket of g with X0(M) = C∞(M) lies in
X0(M)⊕ · · · ⊕ Xn−1(M), we regard g acting on X0(M) = C∞(M) by

U · f = [U, f ] mod g .



August 21, 2019 14:49 WSPC/INSTRUCTION FILE mikz-ijm-v6

Euler numbers and Betti numbers of homology of pre Lie superalgebra 15

Actually, if U ∈ X1(M) then U · f = [U, f ] = 〈U, df〉 and if U ∈ Xi(M) then U · f = 0

for i > 1. So we have a representation space V = X0(M) = C∞(M) of g and the action.
Now we consider M = Rn and we may study homology groups of the chain spaces

∆mg⊗ V with the boundary operator ∂V as introduced in the section 2.
We introduce double-weighted chain spaces using the specialty of the base space M =

Rn. The chain spaces are given by

Cm,w,h =
∑

∑m
s=1(is−1)=w∑m
s=0(hs−1)=h

Xi1
h1
(Rn)∆ · · ·∆Xim

hm
(Rn)⊗ X0

h0
(Rn) (m ≥ 0) (4.13)

=
∑
h0

Cm,w,h+1−h0
⊗ X0

h0
(Rn) (m ≥ 0) , (4.14)

where C•,w,h′ are the chain spaces in the trivial module. We easily see the following
proposition.

Proposition 4.8. The double weight is invariant by ∂V , i.e., ∂V
(
Cm,w,h

)
⊂ Cm−1,w,h.

Thus, we have the double-weighted homology groups Hm,w,h(g, V ) with g-module V as
coefficient.

Proof. We know that [Xi
h,X

i′

h′ ] ⊂ Xi+i′−1
h+h′−1 and in particular, [Xi

h,X
0
h′ ] ⊂ Xi−1

h+h′−1.

∂V (X
i1
h1
∆ · · ·∆Xim

hm
⊗ X0

h0
)

=∂(Xi1
h1
∆ · · ·∆Xim

hm
)⊗ X0

h0
±
∑
p

Xi1
h1
∆ . . . X̂

ip
hp

. . .Xim
hm
⊗ [X

ip
hp
,X0

h0
]

Thus, we directly see that the double weight of the first part
[X

ip
hp
,X

iq
hq
]∆ . . . X̂

ip
hp

. . . X̂
iq
hq
· · · ⊗ X0

h0
does not change. About the second part,

Xi1
h1
∆ . . . X̂

ip
hp

. . .Xim
hm
⊗ [X

ip
hp
,X0

h0
] is 0 if ip 6= 1. When ip = 1, the first weight is∑

s̸=p

(is−1) =

m∑
s=1

(is−1) = w and the second weight is
∑
s ̸=p

(hs−1)+(hp+h0−1−1) =

m∑
s=0

(hs − 1) = h.

Due to Lemma 4.1 and Theorem 4.1, we have following result about Euler number of
the chain complex (C•,w,h, ∂V ).

Theorem 4.2. The Euler number of (C•,w,h, ∂V ) is 0 for each w and h.

Proof. From (4.14),∑
m≥0

(−1)m dimCm,w,h =
∑
m≥0

(−1)m
∑
h0

dimCm,w,h+1−h0
dimX0

h0

=
∑
h0

dimX0
h0

∑
m≥0

(−1)m dimCm,w,h+1−h0
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using Theorem 4.1
=
∑
h0

dimX0
h0
× 0 = 0 .

4.3. Example of pre Lie superalgebra related to a Lie superalgebra

In Example 1.1, we saw toy models of Lie superalgebra and pre Lie superalgebra. We study
the chain complexes of those.

Recall that we have a gradation gl(2) = g0⊕ g1⊕ g2 where g0 =

[
a 0

0 −a

]
, g1 =

[
0 ∗
∗ 0

]
and g2 =

[
a 0

0 a

]
. Take a basis u1 =

[
1 0

0 −1

]
∈ g0, u2 =

[
0 1

0 0

]
,u3 =

[
0 0

1 0

]
∈ g1,

u4 =

[
1 0

0 1

]
∈ g2 with the following bracket relation:

Table 3. the bracket relation and the chain spaces with dim, rank information

u1 u2 u3 u4

u1 0 2u2 −2u3 0
u2 −2u2 0 u4 0
u3 2u3 u4 0 0
u4 0 0 0 0

m w − 1 w w + 1

Cm,w ∆w−2g1∆g2 ∆wg1 ⊕ g0∆
w−2g1∆g2 g0∆

wg1
dim w − 1 2w w + 1

dim ∂ w − 1 w + 1 0
Betti 0 0 0

Given a weight w, we consider the chain space for m = w−1, w, w+1 then computing
the boudary homomorphism, we get dimensions, ranks and Betti numbers as in right above.

The Lie superalgebra in Example 1.1 is sometimes denoted as gl(1|1) = g[0] ⊕ g[1].

g[0] is spanned by v1 =

[
1 0

0 0

]
and v2 =

[
0 0

0 1

]
, and g[1] is spanned by v3 =

[
0 1

0 0

]
and

v4 =

[
0 0

1 0

]
. Those basis satisfy the following bracket relations: Depending on the weight

Table 4. the bracket relation
v1 v2 v3 v4

v1 0 0 v3 −v4

v2 0 0 −v3 v4

v3 −v3 v3 0 v1 + v2

v4 v4 −v4 v1 + v2 0

to be even or odd, we have

C2m,[0] = ∆2mg[1] ⊕∆2g[0]∆
2m−2g[1] , C2m+1,[0] = g[0]∆

2mg[1] ,

C2m,[1] = g[0]∆
2m−1g[1] , C2m+1,[1] = ∆2m+1g[1] ⊕∆2g[0]∆

2m−1g[1] .

Denote ∆av3∆
bv4 by F (a, b). Then

∂(F (a, b)) = ab(v1 + v2)∆F (a− 1, b− 1)
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∂(v1∆F (a, b)) = −abv1∆v2∆F (a− 1, b− 1) + (a− b)F (a, b)

∂(v2∆F (a, b)) = abv1∆v2∆F (a− 1, b− 1)− (a− b)F (a, b)

∂(v1∆v2∆F (a, b)) = (a− b)v1∆v2∆F (a, b)

Table 5. even cases
• . . . 2m− 1 2m 2m+ 1

dimC•,[0] . . . 2(2m− 1) 2(2m) 2(2m+ 1)

dim ∂ 2m− 1 2m− 1 2m+ 1 2m+ 1

Betti . . . 0 0 0

Table 6. odd cases
• 2m− 2 2m− 1 2m 2m+ 1

dimC•,[1] 2(2m− 2) 2(2m− 1) 2(2m) 2(2m+ 1)

dim ∂ 2(m− 1) 2m 2m 2(m+ 1)

Betti . . . 0 0 0

5. Betti Numbers of Homology Groups of Concrete pre Lie Superalgebras

So far, we studied the chain spaces Cm,w,h for fixed space dimension n and double weight
(w, h). As stated in Remark 3.1, we may find all Poisson structures in the second homology
group of pre Lie superalgebra of tangent bundle of M with the Schouten bracket. Thus, it
is interesting to study the second and/or the third homology group. But, it seems hard to
attack to general manifoldM . So, again we consider the pre Lie superalgebra of multi vector
fields on Rn with homogeneous polynomial coefficients. We study not only the second Betti
number but also Betti numbers of general degree.

In pre Lie superalgebra theory, recursive formulae of the boundary operator are given in
two ways as below: one is given by using right action and the other is given by left action.

∂(A1∆ · · ·∆Am+1)

= ∂(A1∆ · · ·∆Am)∆Am+1 + (−1)m+1(A1∆ · · ·∆Am)Am+1 (5.1)
where

(A1∆ · · ·∆Am)Am+1

=

m∑
i=1

(−1)am+1
∑m

s=i+1 asA1∆ · · ·∆[Ai, Am+1]∆ · · ·∆Am . (5.2)

∂(A0∆A1∆ · · ·∆Am)

=−A0∆∂(A1∆ · · ·∆Am) +A0 · (A1∆ · · ·∆Am) (5.3)
where

A0 · (A1∆ · · ·∆Am)



August 21, 2019 14:49 WSPC/INSTRUCTION FILE mikz-ijm-v6

18 K. Mikami, T. Mizutani

=

m∑
i=1

(−1)a0
∑

s<i asA1∆ · · ·∆[A0, Ai]∆ · · ·∆Am) , (5.4)

for each homogeneous elements Ai ∈ gai .
In lower degree, the boundary operator is given as below:

∂(A∆B) = [A,B] (5.5)
∂(A∆B∆C) = −A∆[B,C] + [A,B]∆C + (−1)abB∆[A,C] (5.6)

for each homogeneous elements A ∈ ga, B ∈ gb, C ∈ gc.
If we will handle Poisson structures on Rn by homology theory of pre Lie superalgebra,

then Remark 3.1 says we will deal with {C•,w=2,h}, where

C1,2,h = X3
h+1 ,

C2,2,h =
∑

a+b=h+2

X1
a∆X3

b +
∑

a+b=h+2

X2
a∆X2

b ,

C3,2,h =
∑

c+a+b=h+2+1

X1
c∆X1

a∆X3
b +

∑
c+a+b=h+2+1

X1
c∆X2

a∆X2
b ,

...

Remark 5.1. Since Cm,w,h =
∑

∑m
i=1 ai=w+m,∑m
i=1 bi=h+m

Xa1

b1
∆Xa2

b2
∆ · · ·∆Xam

bm
in general, if

Cm,w,h 6= (0) then ai ≤ n for each i, and so
∑m

i=1 ai ≤ mn. Thus, w ≤ m(n − 1).
Namely, w is bounded from above by the dimension n and the degree m of the chain space.

On M = Rn, we have a special vector field E =
∑n

i=1 xi
∂

∂xi
∈ X1

1 (called Euler vector
field). It is known that if f is h-homogeneous polynomial, then [E, f ] = hf . If D ∈ Xp

0,
then [E,D] = −pD holds. In general, we have the following lemma

Lemma 5.1. For each U ∈ Xp
h,

E · U = [E,U ] = (−p+ h)U (5.7)
holds. In fact, the action of E is divided into two parts:

n∑
k=1

xk[(
∂

∂xk
), U ] = hU , (5.8)

and
n∑

k=1

(
∂

∂xk
) ∧ [xk, U ] = −pU . (5.9)

Thus,
E ·W = (−w + h)W (∀W ∈ Cm,w,h) . (5.10)

Proof. In order to prove (5.10), using (5.4), we have

E ·
∑
i

Ai
1∆ · · ·∆Ai

m =
∑
i

m∑
k=1

Ai
1∆ · · ·∆[E,Ai

k]∆ · · ·∆Ai
m
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=
∑
i

m∑
k=1

Ai
1∆ · · ·∆(−w(Ai

k) + h̄(Ai
k))A

i
k∆ · · ·∆Ai

m

=
∑
i

m∑
k=1

(−w(Ai
k) + h̄(Ai

k))A
i
1∆ · · ·∆Ai

k∆ · · ·∆Ai
m

=
∑
i

(−w + h)Ai
1∆ · · ·∆Ai

k∆ · · ·∆Ai
m

= (−w + h)
∑
i

Ai
1∆ · · ·∆Ai

k∆ · · ·∆Ai
m .

Using Lemma above, we have the following proposition.

Proposition 5.1. Define a map ϕ : Cm,w,h → Cm+1,w,h by ϕ(U) = E∆U . Then we have

∂ ◦ ϕ+ ϕ ◦ ∂ = (−w + h) id . (5.11)

Proof. Take W ∈ Cm,w,h, then we have

∂(ϕW ) =∂(E∆W )
(5.3)
= −E∆∂W + E ·W (5.10)

= −ϕ(∂W ) + (−w + h)W .

Directly from this proposition we have the following theorem.

Theorem 5.1 (m-th Betti number). Each m-th Betti numbers of (w, h)-weighted chain
complex {C•,w,h} is 0 if w 6= h.

Proof. Take a cycle W ∈ Cm,w,h. The proposition above yields

(−w + h)W = ∂(ϕ(W )) + ϕ(∂U) = ∂(ϕ(W ))

and

W =
1

−w + h
∂(E∆W ) if w 6= h .

This means the result.

Remark 5.2. When w = h, Theorem 5.1 says E∆U is a cycle if U is a cycle in Cm,w,h.

Remark 5.3. We have the table of Betti numbers of {C•,0,0} of R2 in Example 4.1, which
shows non-trivial Betti numbers: b0 = 1, b5 = 2, b7 = 1, b8 = 2.

For the first Betti number, we have the following result without any restriction on w, h.

Theorem 5.2 (1st Betti number). The first Betti number of (w, h)-weighted chain complex
{C•,w,h} is 0 for each double weight (w, h).

Proof. Fix a general weight (w, h). C1,w,h = Xw+1
h+1 and C2,w,h =

∑
p+q=2+w
a+b=2+h

Xp
a∆Xq

b .
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Take ∀U ∈ Xw+1
h+1 . Then (

∂

∂xk
)∆(xkU) ∈ X1

0∆Xw+1
h+2 ⊂ C2,w,h. Now we see

∂((
∂

∂xk
)∆xkU) =[(

∂

∂xk
), xkU ] = U + xk[(

∂

∂xk
), U ]

n∑
k=1

∂((
∂

∂xk
)∆xkU) =nU +

n∑
k=1

xk[(
∂

∂xk
), U ] = (n+ 1 + h)U .

We have the same result about the second Betti number when w = h = 0.

Proposition 5.2. The 2nd Betti number is zero when w = h = 0.

Proof. Since C2,0,0 =
∑

a+b=0+2,a≤b X
1
a∆X1

b = X1
0∆X1

2 + X1
1∆X1

1, a general cycle
T ∈ C2,0,0 is given by T =

∑
i Ai∆Bi +

∑
j<ℓ p

j,ℓYj∆Yℓ where

Ai ∈ X1
0 , Bi ∈ X1

2 , Yj ∈ X1
1 , pj,ℓ + pℓ,j = 0

and with the cycle condition ∂(
∑

i Ai∆Bi +
∑

j<ℓ p
j,ℓYj∆Yℓ) = 0, i.e.,

∑
i[Ai, Bi] +∑

j<ℓ p
j,ℓ[Yj , Yℓ] = 0.

Consider
∑
i

(
∂

∂xk
)∆Ai∆(xkBi) +

∑
j<ℓ

pj,ℓ(
∂

∂xk
)∆Yj∆(xkYℓ) ∈ C3,0,0 . We com-

pute its boundary image.

∂

∑
i

(
∂

∂xk
)∆Ai∆(xkBi) +

∑
j<ℓ

pj,ℓ(
∂

∂xk
)∆Yj∆(xkYℓ)


=−

∑
i

(
∂

∂xk
)∆[Ai, xkBi] +

∑
i

[(
∂

∂xk
), Ai]∆(xkBi) +

∑
i

Ai∆[(
∂

∂xk
), xkBi]

−
∑
j<ℓ

pj,ℓ(
∂

∂xk
)∆[Yj , xkYℓ] +

∑
j<ℓ

pj,ℓ[(
∂

∂xk
), Yj ]∆(xkYℓ) +

∑
j<ℓ

pj,ℓYj∆[(
∂

∂xk
), xkYℓ]

=−
∑
i

(
∂

∂xk
)∆([Ai, xk]Bi + xk[Ai, Bi]) +

∑
i

[(
∂

∂xk
), Ai]∆(xkBi)

+
∑
i

Ai∆[(
∂

∂xk
), xkAi]−

∑
j<ℓ

pj,ℓ(
∂

∂xk
)∆([Yj , xk]Yℓ + xk[Yj , Yℓ])

+
∑
j<ℓ

pj,ℓ[(
∂

∂xk
), Yj ]∆(xkYℓ) +

∑
j<ℓ

pj,ℓYj∆[(
∂

∂xk
), xkYℓ]

from cycle condition, we have

=−
∑
i

(
∂

∂xk
)∆([Ai, xk]Bi) +

∑
i

[(
∂

∂xk
), Ai]∆(xkBi) +

∑
i

Ai∆[(
∂

∂xk
), xkBi]

−
∑
j<ℓ

pj,ℓ(
∂

∂xk
)∆([Yj , xk]Yℓ) +

∑
j<ℓ

pj,ℓ[(
∂

∂xk
), Yj ]∆(xkYℓ) +

∑
j<ℓ

pj,ℓYj∆[(
∂

∂xk
), xkYell]
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since [Ai, xk] are constant number, we have

=−
∑
i

[Ai, xk](
∂

∂xk
)∆Bi + 0 +

∑
i

Ai∆[(
∂

∂xk
), xkBi]−

∑
j<ℓ

pj,ℓ(
∂

∂xk
)∆([Yj , xk]Yℓ)

+
∑
j<ℓ

pj,ℓ[(
∂

∂xk
), Yj ]∆(xkYℓ) +

∑
j<ℓ

pj,ℓYj∆[(
∂

∂xk
), xkYℓ] .

Now, summing up by k, we have

∑
k

∂

∑
i

(
∂

∂xk
)∆Ai∆(xkBi) +

∑
j

(
∂

∂xk
)∆Yj∆(xkYℓ)


=−

∑
i

Ai∆Bi +
∑
i,k

Ai∆(Bi + xk[(
∂

∂xk
), Bi])

+
∑
j,k

(
−( ∂

∂xk
)∆([Yj , xk]Yℓ) + [(

∂

∂xk
), Yj ]∆(xkYℓ) + Yj∆(Yℓ + xk[(

∂

∂xk
), Yℓ])

)
=−

∑
i

Ai∆Bi +
∑
i

Ai∆((n+ 2)Bi)−
∑
j<ℓ,k

pj,ℓ(
∂

∂xk
)∆([Yj , xk]Yℓ)

+
∑
j<ℓ,k

pj,ℓ[(
∂

∂xk
), Yj ]∆(xkYℓ) +

∑
j<ℓ

pj,ℓYj∆((n+ 1)Yℓ)

=(n+ 1)(
∑
i

Ai∆Bi +
∑
j<ℓ

pj,ℓYj∆Yℓ)

−
∑
j<ℓ,k

pj,ℓ(
∂

∂xk
)∆([Yj , xk]Yℓ) +

∑
j<ℓ,k

pj,ℓ[(
∂

∂xk
), Yj ]∆(xkYℓ) .

It is enough to show the sum of the last two terms vanishes and we can do it as follows:

Since X1
1 3 Yj =

∑
k,ℓ

Y k,ℓ
j xℓ(

∂

∂xk
) where Y k,ℓ

j are constant, [Yj , xk]Yℓ = Y k
j Yℓ =

∑
t

Y k,t
j xtYℓ and [(

∂

∂xk
), Yj ](

∂

∂xs
) =

∑
s

Y s,k
j (

∂

∂xs
). Thus, 2nd term+3rd term becomes

−
∑
j<ℓ,k

pj,ℓ(
∂

∂xk
)∆(

∑
t

Y k,t
j xtYℓ) +

∑
j<ℓ,k

pj,ℓ
∑
s

Y s,k
j (

∂

∂xs
)∆(xkYℓ)

=−
∑
j<ℓ

pj,ℓ
∑
k

(
∂

∂xk
)∆(

∑
t

Y k,ℓ
j xℓYℓ) +

∑
j<ℓ

pj,ℓ
∑
s

Y s,k
j (

∂

∂xs
)∆(xkYℓ)

=−
∑
j<ℓ

pj,ℓ
∑
k

(
∂

∂xk
)∆(

∑
t

Y k,ℓ
j xℓYℓ) +

∑
j<ℓ

pj,ℓ
∑
s

(
∂

∂xs
)∆(Y s,k

j xkYℓ)

=0 .

Remark 5.4. We expect to know the second Betti number of the chain complex {C•,w,w}
for w > 0. We know the second Betti number is 0 for lower n.



August 21, 2019 14:49 WSPC/INSTRUCTION FILE mikz-ijm-v6

22 K. Mikami, T. Mizutani

Acknowledgments

The first author is partially supported by JSPS KAKENHI Grant Number JP26400063,
JP23540067 and JP20540059.

References
[1] M. Aghashi, B. M.-Alizadeh, J. Merker, and M. Sabzevari. A Gröbner-Bases Algorithm for the

computation of the cohomology of Lie (super)algebras. arXiv:1104.5300v1, April 2011.
[2] H. Kodama, K. Mikami, and T. Mizutani. First Betti number of weighted homology group of

Hamiltonian vector fields on symplectic tori. arXiv:1705.10894.v2, March 2018.
[3] K. Mikami. Lower weight Gel’fand-Kalinin-Fuks cohomology groups of formal Hamiltonian

vector fields on 6-dimensional plane. arXiv:1402.6834, February 2014.
[4] K. Mikami and Y. Nakae. Lower weight Gel’fand-Kalinin-Fuks cohomology groups of the formal

Hamiltonian vector fields on R4. J. Math. Sci. Univ. Tokyo, 19:1–18, 2012.
[5] K. Mikami, Y. Nakae, and H. Kodama. Higher weight Gel’fand-Kalinin-Fuks classes of formal

Hamiltonian vector fields of symplectic R2. arXiv:1210.1662v2, February 2014.
[6] Kentaro Mikami and Tadayoshi Mizutani. Cohomology groups of homogeneous Poisson struc-

tures. arXiv:1511.00199v4, May 2017.


