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Commuting Operations (Not Recommended)
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Relation between Mathematics and Cryptography

Q. How about topology?
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Public Key Encryption (PKE)

To conceal messages from attackers

Encryption: message 7→ ciphertext

using public encryption key pk

Decryption: ciphertext 7→ message

using secret decryption key sk

Decsk(Encpk(m)) = m

pk should not yield information on sk
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The RSA Cryptosystem [1977 ?]

N = pq (distinct primes)

e, d with ed ≡ 1 (mod (p − 1)(q − 1))

Given message m ∈ (Z/NZ)×,
Enc(m) := me (public key: (N , e))

Dec(c) := cd (secret key: d)

d would be computable if p, q were known

Drawback: Enc is deterministic (“textbook RSA”)

Improved variant is practically used
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Computational Assumptions

In PKE, secret should not be found in “practical”
(theoretically, probabilistic polynomial) time

E.g. “Factoring N is hard” for the RSA

Theoretically, just “assumption” (cf. P vs NP)

Practically, evaluated by experiments
Consensus: “(General) Number Field Sieve”
would factorize N ≈ 21024 in near future
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Prior to RSA — Diffie–Hellman Key Exchange [1976]

Protocol between parties P1 and P2

Choose G = ⟨g⟩ (finite cyclic) in public, then

1 Pi sends hi := g ai , while hiding ai ∈ Z
2 Given h3−i , Pi computes Ki := h3−i

ai

Getting a common (random) secret element

K1 = (g a2)a1 = g a2a1 = g a1a2 = (g a1)a2 = K2

with no pre-shared secret

Can be converted to PKE [ElGamal 1985]
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Is DH Key Exchange Secure?

Public: G = ⟨g⟩ and hi ∈ G
Secret: ai with hi = g ai

⇒ The discrete logarithm problem (DL) in G
must be computationally hard:

(DL) Given g , h, find x with h = g x in G

Remark: (In)sufficiency is still open
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Choice of the Group for Security (1/2)

Q1. x · 7 = 15 in Z/16Z? ... x = 9

Q2. 10x = 6 in F×
17? ... x = 5

Q2 looks more difficult than Q1,
though Z/16Z ≃ F×

17 as groups

⇒ Difficulty of DL does depend on
a “realization” of the same abstract group G !
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Choice of the Group for Security (2/2)

Efficient solution for Q1:
use (Extended) Euclidean Algorithm

which uses integer division (or ordering)

for the DL in additive group Z/nZ!
A lesson: Additional structure for group G makes
the DL easier (⇒ break of DH Key Exchange)

Cf. [Maurer 2005] DL is hard in “generic group”

“Oracle access to multiplication table only”
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A New Viewpoint from Cryptography

(Mathematician: more structures, more happiness)
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State-of-the-Art Candidate from Elliptic Curves

(Subgroups of) groups of rational points on
elliptic curves (over finite fields)

Additive group structure

Other structures are not known well
(in comparison to Z/nZ and Fq

×)

Current status: |G | ⪆ 2160

Cf. N ⪆ 21024 for the RSA
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Shor’s Quantum Algorithms

Quantum computer: framework of fast computation
using superimposed quantum states

Not practically implemented so far

[Shor 1994]: Quantum algorithms, implying

integer factoring in polynomial time!

discrete logarithm in polynomial time!

(Cf. [Grover 1996]: Search with quadratic speedup)
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Pinpoint Effect by Shor to Cryptography

Shor’s main applications: integer factoring and DL

Main tools of PKE: integer factoring and DL

Oh, My God!

−→ Importance of “quantum-resistant” PKE

(Believed to be) unbroken by quantum computer
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Candidates of quantum-resistant PKE

Based on (conjectural) hardness of solving:

Knapsack problem (not good)

System of multivariate quadratic equations (fair)

Decoding random linear codes (sometimes good)

Shortest vectors in integer lattices (hopeful)

Finding sections on algebraic surfaces (?)

Finding isogeny between elliptic curves (?)

...
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Remark: P vs. “Break of Cryptosystem”

Given any algorithm (attacker),

“non-P” means

At least one problem instance is hard to solve

“Security of PKE” means

“Almost all” ciphertexts are hard to break
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A Major Strategy for PKE
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Multi-Party Computation (MPC): Two-Party Case

Given function f (x , y) (e.g., f (x , y) = δx ,y),

Party P1 has secret input a1

Party P2 has secret input a2

They want to know f (a1, a2) by communication

while hiding information on each input!

(except those trivially implied from f (a1, a2))
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A Tool for MPC: Homomorphic Encryption (HE)

Example: additively-HE

Message set M is additive group

A “practical” operation ⊞ for ciphertexts with

Dec(c1 ⊞ c2) = Dec(c1) + Dec(c2) ∈ M

(called “homomorphic operation”)

“Messages can be added in encrypted form”
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A “Rough Idea” for HE
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Example of (Multiplicative) HE [ElGamal 1985]

Public key: G = ⟨g⟩ (prime order), h ∈ G
Secret key: s ∈ Z with h = g s

Given m ∈ G , Enc(m) := (g r , hrm) ∈ G 2

where r ∈ Z is random

Given c = (c1, c2), Dec(c) := c1
−sc2

“Project to (g 0, gZ) in direction (g 1, g−s)”

Homomorphic operation: multiplication in G 2

(c) Koji Nuida October 29, 2016 トポロジーを暗号に応用したい 24/32
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Example of MPC from HE

How to compute δa1,a2 (Notation: [[a]] := Enc(a))

Suppose: additively-HE with M = Fp

1 P1 chooses key, sends public key only

2 P1 generates and sends [[a1]]

3 P2 computes [[a1]]⊞ [[−a2]] = [[a1 − a2]]

4 P2 computes [[r(a1 − a2)]] for random r ̸= 0

by random iteration of ⊞ to [[a1 − a2]]

5 P1 decrypts [[r(a1 − a2)]] ⇝ 0 iff a1 = a2

(c) Koji Nuida October 29, 2016 トポロジーを暗号に応用したい 25/32
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Fully Homomorphic Encryption [2009]

(Additively-)HE: “addition in encrypted form”

Fully homomorphic encryption (FHE):

Any computation in encrypted form

⇔ Ring-HE, when M = Fp (p prime)

(c) Koji Nuida October 29, 2016 トポロジーを暗号に応用したい 26/32



Fully Homomorphic Encryption [2009]

(Additively-)HE: “addition in encrypted form”

Fully homomorphic encryption (FHE):

Any computation in encrypted form

⇔ Ring-HE, when M = Fp (p prime)

(c) Koji Nuida October 29, 2016 トポロジーを暗号に応用したい 26/32



Fully Homomorphic Encryption [2009]

(Additively-)HE: “addition in encrypted form”

Fully homomorphic encryption (FHE):

Any computation in encrypted form

⇔ Ring-HE, when M = Fp (p prime)

(c) Koji Nuida October 29, 2016 トポロジーを暗号に応用したい 26/32



(Too) Simplified Example [2010] [N. et al. 2015]

Z/ℓZ identified with {0, . . . , ℓ− 1} by “mod”

Choose p′ ≫ p primes, p′ |N

Enc(m) = r ′p′ + rp +m mod N for m ∈ Fp

Dec(c) = (c mod p′) mod p

Decryption works iff r is “not too large”

Ring-homomorphic operations: as usual in Z/NZ
but iteration of operations is limited! (r grows)

“Bootstrapping”: refreshing the ciphertext

possible, but very inefficient
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Towards “Unlimited” Ring-HE

A (hopefully) possible strategy:

1 “Embed” Fp into a (non-commutative) group G

Operations of Fp realized by operations of G

2 Take a lift of G (e.g., G × H for suitable H)

3 “Homomorphically hide” the structure of the lift

⇝ hard-to-compute group hom. φ : G̃ ↠ G

must be easy-to-compute with secret key

Public: G and generators of kerφ (for Enc)
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How to “Realize” F2 in PSL2(Fq)

[N. 2014 (preprint)]

G := PSL2(Fq), q ≫ 1

X0 := {c = (c1, c2) ∈ G 2 | c1 ̸= 1, c2 = 1}
X1 := {c = (c1, c2) ∈ G 2 | c1 ̸= 1, c2 = c1}
Xb ∋ (c1, c2) 7→ (c1, c1c2

−1) ∈ X1−b (⇝ “NOT”)
For c , c ′ ∈ X0 ∪ X1, define (with random g ∈ G )

[c , c ′]† := ([g−1c1g , c
′
1], [g

−1c2g , c
′
2])

With probability ≈ 1− q−1 we have: (⇝ “AND”)

If c , c ′ ∈ X1, then [c , c ′]† ∈ X1

Otherwise, [c , c ′]† ∈ X0

(c) Koji Nuida October 29, 2016 トポロジーを暗号に応用したい 29/32
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How to Realize NAND Gate in Simple Groups

NAND(b1, b2) = 0 iff b1 = b2 = 1
(Compositions of NAND yield AND,OR,NOT, . . . )

[Ostrovsky–Skeith 2008] For any non-commutative
finite simple group G , there exist g0 ̸= g1 ∈ G and
F : G 2 → G with:

F (g1, g1) = g0

F (g0, g0) = F (g0, g1) = F (g1, g0) = g1

F is composed of group operations in G

(Proof idea: ⟨commutators⟩normal = G )
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Towards Homomorphically Hiding the Group

My recent (very rough) idea:

1 Presentation of G × H by generators/relations

2 “Shuffle” presentation by randomly applying
Tietze transformations

3 Apply Knuth-Bendix completion algorithm, to
yield normal form of each group element

Otherwise, Enc is also hard-to-compute

Current problems:

Knuth-Bendix algorithm may not terminate

Is it really secure?
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How to Apply Topology, Hopefully

Goal: Hard-to-compute φ : G̃
hom.−→ G with G and

generators of kerφ public

Easy-to-compute if secret key is known

Message set is “embedded” into G

Questions:

Good G̃ , associated to some topological object?
(Cf. groups from elliptic curves)

Embedding into other topology-related objects?
(E.g., quandles from knot theory)
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