トポロジーを暗号に応用したい
 How to Apply Topology to Cryptology，Hopefully

縫田 光司（Koji NUIDA）

産業技術総合研究所（AIST）
トポロジーとコンピュータ2016 2016年10月29日

Commuting Operations

Mr．X＂May I ask you to give a talk？＂

N．＂（Hmm．．．，oh，I got topic to talk！）＂

N．＂Sure，I can talk！＂

Commuting Operations

Mr．X＂May I ask you to give a talk？＂

N．＂（Hmm．．．，oh，I got topic to talk！）＂

「もしかして」

N．＂Sure，I can talk！＂

Commuting Operations

Mr．X＂May I ask you to give a talk？＂

N．＂（Hmm．．．，oh，I got topic to talk！）＂

「もしかして」

「わたしたち」

N．＂Sure，I can talk！＂

Commuting Operations（Not Recommended）

Mr．X＂May I ask you to give a talk？＂

N．＂Sure，I can talk！＂

> 「入れ替わってる~~! ? 」

N．＂（Hmm．．．，oh，I got topic to talk！）＂

Relation between Mathematics and Cryptography

Theoretical base \＆tools

Q．How about topology？

Public Key Encryption（PKE）

－To conceal messages from attackers

Public Key Encryption（PKE）

－To conceal messages from attackers
－Encryption：message \mapsto ciphertext －using public encryption key pk
－To conceal messages from attackers
－Encryption：message \mapsto ciphertext －using public encryption key pk
－Decryption：ciphertext \mapsto message －using secret decryption key sk
－To conceal messages from attackers
－Encryption：message \mapsto ciphertext －using public encryption key pk
－Decryption：ciphertext \mapsto message －using secret decryption key sk
－ $\operatorname{Dec}_{\text {sk }}\left(\operatorname{Enc}_{\text {pk }}(m)\right)=m$
－To conceal messages from attackers
－Encryption：message \mapsto ciphertext －using public encryption key pk
－Decryption：ciphertext \mapsto message －using secret decryption key sk
－ $\operatorname{Dec}_{\text {sk }}\left(\operatorname{Enc}_{\text {pk }}(m)\right)=m$
－pk should not yield information on sk
－$N=p q$（distinct primes）
－e, d with $e d \equiv 1(\bmod (p-1)(q-1))$
Given message $m \in(\mathbb{Z} / N \mathbb{Z})^{\times}$，
－Enc $(m):=m^{e}$（public key：(N, e) ）
－ $\operatorname{Dec}(c):=c^{d}$（secret key：$d$ ）
－$N=p q$（distinct primes）
－e, d with $e d \equiv 1(\bmod (p-1)(q-1))$
Given message $m \in(\mathbb{Z} / N \mathbb{Z})^{\times}$，
－Enc $(m):=m^{e}$（public key：(N, e) ）
－ $\operatorname{Dec}(c):=c^{d}$（secret key：$d$ ）
d would be computable if p, q were known
－$N=p q$（distinct primes）
－e, d with $e d \equiv 1(\bmod (p-1)(q-1))$
Given message $m \in(\mathbb{Z} / N \mathbb{Z})^{\times}$，
－Enc $(m):=m^{e}$（public key：(N, e) ）
－ $\operatorname{Dec}(c):=c^{d}$（secret key：$d$ ）
d would be computable if p, q were known
Drawback：Enc is deterministic（＂textbook RSA＂）
－Improved variant is practically used

Computational Assumptions

In PKE，secret should not be found in＂practical＂
（theoretically，probabilistic polynomial）time
－E．g．＂Factoring N is hard＂for the RSA

Computational Assumptions

In PKE，secret should not be found in＂practical＂
（theoretically，probabilistic polynomial）time
－E．g．＂Factoring N is hard＂for the RSA
－Theoretically，just＂assumption＂（cf．P vs NP）
－Practically，evaluated by experiments
－Consensus：＂（General）Number Field Sieve＂ would factorize $N \approx 2^{1024}$ in near future

Protocol between parties P_{1} and P_{2}
（1）
（2）
Getting a common（random）secret element
with no pre－shared secret

Protocol between parties P_{1} and P_{2}
Choose $G=\langle g\rangle$（finite cyclic）in public，then \bullet
－
Getting a common（random）secret element with no pre－shared secret

Prior to RSA — Diffie－Hellman Key Exchange［1976］

Protocol between parties P_{1} and P_{2}
Choose $G=\langle g\rangle$（finite cyclic）in public，then
（1）P_{i} sends $h_{i}:=g^{a_{i}}$ ，while hiding $a_{i} \in \mathbb{Z}$
（2）
Getting a common（random）secret element
with no pre－shared secret

Prior to RSA — Diffie－Hellman Key Exchange［1976］

Protocol between parties P_{1} and P_{2}
Choose $G=\langle g\rangle$（finite cyclic）in public，then
（1）P_{i} sends $h_{i}:=g^{a_{i}}$ ，while hiding $a_{i} \in \mathbb{Z}$
（2）Given h_{3-i}, P_{i} computes $K_{i}:=h_{3-i}{ }^{a_{i}}$
Getting a common（random）secret element
with no pre－shared secret

Prior to RSA — Diffie－Hellman Key Exchange［1976］

Protocol between parties P_{1} and P_{2}
Choose $G=\langle g\rangle$（finite cyclic）in public，then
（1）P_{i} sends $h_{i}:=g^{a_{i}}$ ，while hiding $a_{i} \in \mathbb{Z}$
（2）Given h_{3-i}, P_{i} computes $K_{i}:=h_{3-i}{ }^{a_{i}}$
Getting a common（random）secret element

$$
K_{1}=\left(g^{a_{2}}\right)^{a_{1}}=g^{a_{2} a_{1}}=g^{a_{1} a_{2}}=\left(g^{a_{1}}\right)^{a_{2}}=K_{2}
$$

with no pre－shared secret

Prior to RSA — Diffie－Hellman Key Exchange［1976］

Protocol between parties P_{1} and P_{2}
Choose $G=\langle g\rangle$（finite cyclic）in public，then
（1）P_{i} sends $h_{i}:=g^{a_{i}}$ ，while hiding $a_{i} \in \mathbb{Z}$
（2）Given h_{3-i}, P_{i} computes $K_{i}:=h_{3-i}{ }^{a_{i}}$
Getting a common（random）secret element

$$
K_{1}=\left(g^{a_{2}}\right)^{a_{1}}=g^{a_{2} a_{1}}=g^{a_{1} a_{2}}=\left(g^{a_{1}}\right)^{a_{2}}=K_{2}
$$

with no pre－shared secret
－Can be converted to PKE［EIGamal 1985］

Is DH Key Exchange Secure？

Public：$G=\langle g\rangle$ and $h_{i} \in G$ Secret：a_{i} with $h_{i}=g^{a_{i}}$

Public：$G=\langle g\rangle$ and $h_{i} \in G$
Secret：a_{i} with $h_{i}=g^{a_{i}}$
\Rightarrow The discrete logarithm problem（DL）in G must be computationally hard：
（DL）Given g, h ，find x with $h=g^{x}$ in G
－Remark：（In）sufficiency is still open

Choice of the Group for Security（1／2）

Choice of the Group for Security（1／2）

Q1．$x \cdot 7=15$ in $\mathbb{Z} / 16 \mathbb{Z}$ ？．．．

Choice of the Group for Security（1／2）

Q1．$x \cdot 7=15$ in $\mathbb{Z} / 16 \mathbb{Z}$ ？$. . . x=9$

Choice of the Group for Security（ $1 / 2$ ）

Q1．$x \cdot 7=15$ in $\mathbb{Z} / 16 \mathbb{Z}$ ？$\ldots x=9$
Q2． $10^{x}=6$ in \mathbb{F}_{17}^{\times}？\ldots

Choice of the Group for Security（ $1 / 2$ ）

> Q1. $x \cdot 7=15$ in $\mathbb{Z} / 16 \mathbb{Z} ? \ldots x=9$
> Q2. $10^{x}=6$ in $\mathbb{F}_{17}^{\times} ? \ldots x=5$

Choice of the Group for Security（1／2）

Q1．$x \cdot 7=15$ in $\mathbb{Z} / 16 \mathbb{Z}$ ？$\ldots x=9$
Q2． $10^{x}=6$ in \mathbb{F}_{17}^{\times}？$\ldots x=5$
Q2 looks more difficult than Q1， though $\mathbb{Z} / 16 \mathbb{Z} \simeq \mathbb{F}_{17}^{\times}$as groups

Choice of the Group for Security（1／2）

Q1．$x \cdot 7=15$ in $\mathbb{Z} / 16 \mathbb{Z}$ ？$\ldots x=9$
Q2． $10^{x}=6$ in \mathbb{F}_{17}^{\times}？．．．$x=5$
Q2 looks more difficult than Q1， though $\mathbb{Z} / 16 \mathbb{Z} \simeq \mathbb{F}_{17}^{\times}$as groups
\Rightarrow Difficulty of DL does depend on
a＂realization＂of the same abstract group G ！

Choice of the Group for Security（2／2）

Efficient solution for Q1：
use（Extended）Euclidean Algorithm

Choice of the Group for Security（2／2）

Efficient solution for Q1：
use（Extended）Euclidean Algorithm
－which uses integer division（or ordering）

Choice of the Group for Security（2／2）

Efficient solution for Q1：
use（Extended）Euclidean Algorithm
－which uses integer division（or ordering）
－for the DL in additive group $\mathbb{Z} / n \mathbb{Z}$ ！

Choice of the Group for Security（2／2）

Efficient solution for Q1：
use（Extended）Euclidean Algorithm
－which uses integer division（or ordering）
－for the DL in additive group $\mathbb{Z} / n \mathbb{Z}$ ！
A lesson：Additional structure for group G makes the DL easier（ \Rightarrow break of DH Key Exchange）
－Cf．［Maurer 2005］DL is hard in＂generic group＂
－＂Oracle access to multiplication table only＂

A New Viewpoint from Cryptography

（Mathematician：more structures，more happiness）

State－of－the－Art Candidate from Elliptic Curves

（Subgroups of）groups of rational points on elliptic curves（over finite fields）

State－of－the－Art Candidate from Elliptic Curves

（Subgroups of）groups of rational points on elliptic curves（over finite fields）
－Additive group structure

State－of－the－Art Candidate from Elliptic Curves

（Subgroups of）groups of rational points on elliptic curves（over finite fields）
－Additive group structure
－Other structures are not known well
（in comparison to $\mathbb{Z} / n \mathbb{Z}$ and $\mathbb{F}_{q}{ }^{\times}$）

State－of－the－Art Candidate from Elliptic Curves

（Subgroups of）groups of rational points on elliptic curves（over finite fields）
－Additive group structure
－Other structures are not known well
（in comparison to $\mathbb{Z} / n \mathbb{Z}$ and $\mathbb{F}_{q}{ }^{\times}$）
Current status：$|G| \gtrsim 2^{160}$
－Cf．$N \gtrsim 2^{1024}$ for the RSA

Shor＇s Quantum Algorithms

Quantum computer：framework of fast computation using superimposed quantum states
－Not practically implemented so far

Shor＇s Quantum Algorithms

Quantum computer：framework of fast computation using superimposed quantum states
－Not practically implemented so far
［Shor 1994］：Quantum algorithms，implying

Shor＇s Quantum Algorithms

Quantum computer：framework of fast computation using superimposed quantum states
－Not practically implemented so far
［Shor 1994］：Quantum algorithms，implying
－integer factoring in polynomial time！
－discrete logarithm in polynomial time！
（Cf．［Grover 1996］：Search with quadratic speedup）

Pinpoint Effect by Shor to Cryptography

Shor＇s main applications：integer factoring and DL

Pinpoint Effect by Shor to Cryptography

Shor＇s main applications：integer factoring and DL Main tools of PKE：integer factoring and DL －Oh，My God！

Shor＇s main applications：integer factoring and DL Main tools of PKE：integer factoring and DL
－Oh，My God！
\longrightarrow Importance of＂quantum－resistant＂PKE
－（Believed to be）unbroken by quantum computer

Candidates of quantum－resistant PKE

Based on（conjectural）hardness of solving：
－Knapsack problem
－System of multivariate quadratic equations
－Decoding random linear codes
－Shortest vectors in integer lattices
－Finding sections on algebraic surfaces
－Finding isogeny between elliptic curves
－．．．

Candidates of quantum－resistant PKE

Based on（conjectural）hardness of solving：
－Knapsack problem（not good）
－System of multivariate quadratic equations（fair）
－Decoding random linear codes（sometimes good）
－Shortest vectors in integer lattices（hopeful）
－Finding sections on algebraic surfaces（？）
－Finding isogeny between elliptic curves（？）
－．．．

Remark：P vs．＂Break of Cryptosystem＂

Given any algorithm（attacker），

Remark：P vs．＂Break of Cryptosystem＂

Given any algorithm（attacker），
＂non－P＂means
－At least one problem instance is hard to solve

Remark：P vs．＂Break of Cryptosystem＂

Given any algorithm（attacker），
＂non－P＂means
－At least one problem instance is hard to solve
＂Security of PKE＂means
－＂Almost all＂ciphertexts are hard to break

A Major Strategy for PKE

Decryption done here

Encryption done here

Easy－to－solve problem instance

Key generation

Assumed to be hard （without secret key）

Hard－to－solve

 problem instancePublic key

Multi－Party Computation（MPC）：Two－Party Case

Given function $f(x, y)$（e．g．，$\left.f(x, y)=\delta_{x, y}\right)$ ，
－Party P_{1} has secret input a_{1}
－Party P_{2} has secret input a_{2}
－They want to know $f\left(a_{1}, a_{2}\right)$ by communication

Multi－Party Computation（MPC）：Two－Party Case

Given function $f(x, y)$（e．g．，$\left.f(x, y)=\delta_{x, y}\right)$ ，
－Party P_{1} has secret input a_{1}
－Party P_{2} has secret input a_{2}
－They want to know $f\left(a_{1}, a_{2}\right)$ by communication
－while hiding information on each input！
－（except those trivially implied from $f\left(a_{1}, a_{2}\right)$ ）

A Tool for MPC：Homomorphic Encryption（HE）

Example：additively－HE

A Tool for MPC：Homomorphic Encryption（HE）

Example：additively－HE

－Message set \mathcal{M} is additive group

A Tool for MPC：Homomorphic Encryption（HE）

Example：additively－HE
－Message set \mathcal{M} is additive group
－A＂practical＂operation \boxplus for ciphertexts with

$$
\operatorname{Dec}\left(c_{1} \boxplus c_{2}\right)=\operatorname{Dec}\left(c_{1}\right)+\operatorname{Dec}\left(c_{2}\right) \in \mathcal{M}
$$

（called＂homomorphic operation＂）

A Tool for MPC：Homomorphic Encryption（HE）

Example：additively－HE
－Message set \mathcal{M} is additive group
－A＂practical＂operation \boxplus for ciphertexts with

$$
\operatorname{Dec}\left(c_{1} \boxplus c_{2}\right)=\operatorname{Dec}\left(c_{1}\right)+\operatorname{Dec}\left(c_{2}\right) \in \mathcal{M}
$$

（called＂homomorphic operation＂）
－＂Messages can be added in encrypted form＂

A＂Rough Idea＂for HE

Example of（Multiplicative）HE［EIGamal 1985］

Example of（Multiplicative）HE［EIGamal 1985］

Public key：$G=\langle g\rangle$（prime order），$h \in G$
Secret key：$s \in \mathbb{Z}$ with $h=g^{s}$

Example of（Multiplicative）HE［EIGamal 1985］

Public key：$G=\langle g\rangle$（prime order），$h \in G$
Secret key：$s \in \mathbb{Z}$ with $h=g^{s}$
－Given $m \in G, \operatorname{Enc}(m):=\left(g^{r}, h^{r} m\right) \in G^{2}$
－where $r \in \mathbb{Z}$ is random

Example of（Multiplicative）HE［EIGamal 1985］

Public key：$G=\langle g\rangle$（prime order），$h \in G$
Secret key：$s \in \mathbb{Z}$ with $h=g^{s}$
－Given $m \in G, \operatorname{Enc}(m):=\left(g^{r}, h^{r} m\right) \in G^{2}$
－where $r \in \mathbb{Z}$ is random
－Given $c=\left(c_{1}, c_{2}\right), \operatorname{Dec}(c):=c_{1}^{-s} c_{2}$
－＂Project to $\left(g^{0}, g^{\mathbb{Z}}\right)$ in direction $\left(g^{1}, g^{-s}\right)$＂

Example of（Multiplicative）HE［EIGamal 1985］

Public key：$G=\langle g\rangle$（prime order），$h \in G$
Secret key：$s \in \mathbb{Z}$ with $h=g^{s}$
－Given $m \in G, \operatorname{Enc}(m):=\left(g^{r}, h^{r} m\right) \in G^{2}$
－where $r \in \mathbb{Z}$ is random
－Given $c=\left(c_{1}, c_{2}\right), \operatorname{Dec}(c):=c_{1}^{-s} c_{2}$
－＂Project to $\left(g^{0}, g^{\mathbb{Z}}\right)$ in direction $\left(g^{1}, g^{-s}\right)$＂
－Homomorphic operation：multiplication in G^{2}

Example of MPC from HE

How to compute $\delta_{a_{1}, a_{2}} \quad($ Notation：$[[a]]:=\operatorname{Enc}(a))$
Suppose：additively－HE with $\mathcal{M}=\mathbb{F}_{p}$

Example of MPC from HE

How to compute $\delta_{a_{1}, a_{2}}$（Notation：［［a］］：＝Enc（a））
Suppose：additively－HE with $\mathcal{M}=\mathbb{F}_{p}$
（1）P_{1} chooses key，sends public key only

Example of MPC from HE

How to compute $\delta_{a_{1}, a_{2}}$（Notation：［［a］］：＝Enc（a））
Suppose：additively－HE with $\mathcal{M}=\mathbb{F}_{p}$
（1）P_{1} chooses key，sends public key only
（2）P_{1} generates and sends［［a $\left.a_{1}\right]$ ］

Example of MPC from HE

How to compute $\delta_{a_{1}, a_{2}}$（Notation：［［a］］：＝Enc（a））
Suppose：additively－HE with $\mathcal{M}=\mathbb{F}_{p}$
（1）P_{1} chooses key，sends public key only
（2）P_{1} generates and sends［［a $\left.a_{1}\right]$ ］
（3）P_{2} computes $\left[\left[a_{1}\right]\right] \boxplus\left[\left[-a_{2}\right]\right]=\left[\left[a_{1}-a_{2}\right]\right]$

How to compute $\delta_{a_{1}, a_{2}}$（Notation：［［a］］：＝Enc（a））
Suppose：additively－HE with $\mathcal{M}=\mathbb{F}_{p}$
（1）P_{1} chooses key，sends public key only
（2）P_{1} generates and sends［［ $\left.a_{1}\right]$ ］
（9）P_{2} computes $\left[\left[a_{1}\right]\right] \boxplus\left[\left[-a_{2}\right]\right]=\left[\left[a_{1}-a_{2}\right]\right]$
（1）P_{2} computes $\left[\left[r\left(a_{1}-a_{2}\right)\right]\right]$ for random $r \neq 0$
－by random iteration of \boxplus to $\left[\left[a_{1}-a_{2}\right]\right]$

How to compute $\delta_{a_{1}, a_{2}}$（Notation：［［a］］：＝Enc（a））
Suppose：additively－HE with $\mathcal{M}=\mathbb{F}_{p}$
（1）P_{1} chooses key，sends public key only
（2）P_{1} generates and sends［［a $\left.a_{1}\right]$ ］
（3）P_{2} computes $\left[\left[a_{1}\right]\right] \boxplus\left[\left[-a_{2}\right]\right]=\left[\left[a_{1}-a_{2}\right]\right]$
（1）P_{2} computes $\left[\left[r\left(a_{1}-a_{2}\right)\right]\right]$ for random $r \neq 0$
－by random iteration of \boxplus to $\left[\left[a_{1}-a_{2}\right]\right]$
（9）P_{1} decrypts $\left[\left[r\left(a_{1}-a_{2}\right)\right]\right] \rightsquigarrow 0$ iff $a_{1}=a_{2}$
（Additively－）HE：＂addition in encrypted form＂
（Additively－）HE：＂addition in encrypted form＂
Fully homomorphic encryption（FHE）：
Any computation in encrypted form
（Additively－）HE：＂addition in encrypted form＂
Fully homomorphic encryption（FHE）：
Any computation in encrypted form
－\Leftrightarrow Ring－HE，when $\mathcal{M}=\mathbb{F}_{p}$（ p prime）
$\mathbb{Z} / \ell \mathbb{Z}$ identified with $\{0, \ldots, \ell-1\}$ by＂mod＂
Choose $p^{\prime} \gg p$ primes，$p^{\prime} \mid N$

（Too）Simplified Example［2010］［N．et al．2015］

$\mathbb{Z} / \ell \mathbb{Z}$ identified with $\{0, \ldots, \ell-1\}$ by＂mod＂
Choose $p^{\prime} \gg p$ primes，$p^{\prime} \mid N$
$\operatorname{Enc}(m)=r^{\prime} p^{\prime}+r p+m \bmod N$ for $m \in \mathbb{F}_{p}$
$\mathbb{Z} / \ell \mathbb{Z}$ identified with $\{0, \ldots, \ell-1\}$ by＂mod＂
Choose $p^{\prime} \gg p$ primes，$p^{\prime} \mid N$
$\operatorname{Enc}(m)=r^{\prime} p^{\prime}+r p+m \bmod N$ for $m \in \mathbb{F}_{p}$
$\operatorname{Dec}(c)=\left(c \bmod p^{\prime}\right) \bmod p$
－Decryption works iff r is＂not too large＂

（Too）Simplified Example［2010］［N．et al．2015］

$\mathbb{Z} / \ell \mathbb{Z}$ identified with $\{0, \ldots, \ell-1\}$ by＂mod＂
Choose $p^{\prime} \gg p$ primes，$p^{\prime} \mid N$
$\operatorname{Enc}(m)=r^{\prime} p^{\prime}+r p+m \bmod N$ for $m \in \mathbb{F}_{p}$
$\operatorname{Dec}(c)=\left(c \bmod p^{\prime}\right) \bmod p$
－Decryption works iff r is＂not too large＂
Ring－homomorphic operations：as usual in $\mathbb{Z} / N \mathbb{Z}$
－but iteration of operations is limited！（ r grows）

（Too）Simplified Example［2010］［N．et al．2015］

$\mathbb{Z} / \ell \mathbb{Z}$ identified with $\{0, \ldots, \ell-1\}$ by＂mod＂
Choose $p^{\prime} \gg p$ primes，$p^{\prime} \mid N$
$\operatorname{Enc}(m)=r^{\prime} p^{\prime}+r p+m \bmod N$ for $m \in \mathbb{F}_{p}$
$\operatorname{Dec}(c)=\left(c \bmod p^{\prime}\right) \bmod p$
－Decryption works iff r is＂not too large＂
Ring－homomorphic operations：as usual in $\mathbb{Z} / N \mathbb{Z}$
－but iteration of operations is limited！（ r grows）
＂Bootstrapping＂：refreshing the ciphertext
－possible，but very inefficient

A（hopefully）possible strategy：

A（hopefully）possible strategy：
－＂Embed＂ \mathbb{F}_{p} into a（non－commutative）group G －Operations of \mathbb{F}_{p} realized by operations of G

Towards＂Unlimited＂Ring－HE

A（hopefully）possible strategy：
－＂Embed＂ \mathbb{F}_{p} into a（non－commutative）group G －Operations of \mathbb{F}_{p} realized by operations of G
－Take a lift of G（e．g．，$G \times H$ for suitable H ）

A（hopefully）possible strategy：
－＂Embed＂ \mathbb{F}_{p} into a（non－commutative）group G －Operations of \mathbb{F}_{p} realized by operations of G
－Take a lift of G（e．g．，$G \times H$ for suitable H ）
－＂Homomorphically hide＂the structure of the lift

Towards＂Unlimited＂Ring－HE

A（hopefully）possible strategy：
－＂Embed＂ \mathbb{F}_{p} into a（non－commutative）group G －Operations of \mathbb{F}_{p} realized by operations of G
－Take a lift of G（e．g．，$G \times H$ for suitable H ）
－＂Homomorphically hide＂the structure of the lift
\rightsquigarrow hard－to－compute group hom．$\varphi: \widetilde{G} \rightarrow G$
－must be easy－to－compute with secret key
－Public：G and generators of $\operatorname{ker} \varphi$（for Enc）

How to＂Realize＂ \mathbb{F}_{2} in $\mathrm{PSL}_{2}\left(\mathbb{F}_{q}\right)$

［N． 2014 （preprint）］
$G:=\operatorname{PSL}_{2}\left(\mathbb{F}_{q}\right), q \gg 1$

How to＂Realize＂ \mathbb{F}_{2} in $\operatorname{PSL}_{2}\left(\mathbb{F}_{q}\right)$

［N． 2014 （preprint）］
$G:=\mathrm{PSL}_{2}\left(\mathbb{F}_{q}\right), q \gg 1$
$X_{0}:=\left\{c=\left(c_{1}, c_{2}\right) \in G^{2} \mid c_{1} \neq 1, c_{2}=1\right\}$
$X_{1}:=\left\{c=\left(c_{1}, c_{2}\right) \in G^{2} \mid c_{1} \neq 1, c_{2}=c_{1}\right\}$

How to＂Realize＂ \mathbb{F}_{2} in $\mathrm{PSL}_{2}\left(\mathbb{F}_{q}\right)$

［N． 2014 （preprint）］
$G:=\mathrm{PSL}_{2}\left(\mathbb{F}_{q}\right), q \gg 1$
$X_{0}:=\left\{c=\left(c_{1}, c_{2}\right) \in G^{2} \mid c_{1} \neq 1, c_{2}=1\right\}$
$X_{1}:=\left\{c=\left(c_{1}, c_{2}\right) \in G^{2} \mid c_{1} \neq 1, c_{2}=c_{1}\right\}$
$X_{b} \ni\left(c_{1}, c_{2}\right) \mapsto\left(c_{1}, c_{1} c_{2}^{-1}\right) \in X_{1-b}\left(\rightsquigarrow{ }^{\prime}{ }^{\prime N O T "}\right)$

How to＂Realize＂ \mathbb{F}_{2} in $\operatorname{PSL}_{2}\left(\mathbb{F}_{q}\right)$

［N． 2014 （preprint）］
$G:=\mathrm{PSL}_{2}\left(\mathbb{F}_{q}\right), q \gg 1$
$X_{0}:=\left\{c=\left(c_{1}, c_{2}\right) \in G^{2} \mid c_{1} \neq 1, c_{2}=1\right\}$
$X_{1}:=\left\{c=\left(c_{1}, c_{2}\right) \in G^{2} \mid c_{1} \neq 1, c_{2}=c_{1}\right\}$
$X_{b} \ni\left(c_{1}, c_{2}\right) \mapsto\left(c_{1}, c_{1} c_{2}^{-1}\right) \in X_{1-b}(\rightsquigarrow$＂NOT＂$)$
For $c, c^{\prime} \in X_{0} \cup X_{1}$ ，define（with random $g \in G$ ）

$$
\left[c, c^{\prime}\right]^{\dagger}:=\left(\left[g^{-1} c_{1} g, c_{1}^{\prime}\right],\left[g^{-1} c_{2} g, c_{2}^{\prime}\right]\right)
$$

How to＂Realize＂ \mathbb{F}_{2} in $\mathrm{PSL}_{2}\left(\mathbb{F}_{q}\right)$

［N． 2014 （preprint）］
$G:=\mathrm{PSL}_{2}\left(\mathbb{F}_{q}\right), q \gg 1$
$X_{0}:=\left\{c=\left(c_{1}, c_{2}\right) \in G^{2} \mid c_{1} \neq 1, c_{2}=1\right\}$
$X_{1}:=\left\{c=\left(c_{1}, c_{2}\right) \in G^{2} \mid c_{1} \neq 1, c_{2}=c_{1}\right\}$
$X_{b} \ni\left(c_{1}, c_{2}\right) \mapsto\left(c_{1}, c_{1} c_{2}^{-1}\right) \in X_{1-b}(\rightsquigarrow$＂NOT＂$)$
For $c, c^{\prime} \in X_{0} \cup X_{1}$ ，define（with random $g \in G$ ）

$$
\left[c, c^{\prime}\right]^{\dagger}:=\left(\left[g^{-1} c_{1} g, c_{1}^{\prime}\right],\left[g^{-1} c_{2} g, c_{2}^{\prime}\right]\right)
$$

With probability $\approx 1-q^{-1}$ we have：（ \rightsquigarrow＂AND＂）
－If $c, c^{\prime} \in X_{1}$ ，then $\left[c, c^{\prime}\right]^{\dagger} \in X_{1}$
－Otherwise，$\left[c, c^{\prime}\right]^{\dagger} \in X_{0}$

How to Realize NAND Gate in Simple Groups

$\operatorname{NAND}\left(b_{1}, b_{2}\right)=0$ iff $b_{1}=b_{2}=1$
（Compositions of NAND yield AND，OR，NOT，．．．）

How to Realize NAND Gate in Simple Groups

$\operatorname{NAND}\left(b_{1}, b_{2}\right)=0$ iff $b_{1}=b_{2}=1$
（Compositions of NAND yield AND，OR，NOT，．．．）
［Ostrovsky－Skeith 2008］For any non－commutative finite simple group G ，there exist $g_{0} \neq g_{1} \in G$ and $F: G^{2} \rightarrow G$ with：

How to Realize NAND Gate in Simple Groups

$\operatorname{NAND}\left(b_{1}, b_{2}\right)=0$ iff $b_{1}=b_{2}=1$
（Compositions of NAND yield AND，OR，NOT，．．．）
［Ostrovsky－Skeith 2008］For any non－commutative finite simple group G ，there exist $g_{0} \neq g_{1} \in G$ and $F: G^{2} \rightarrow G$ with：
－$F\left(g_{1}, g_{1}\right)=g_{0}$
－$F\left(g_{0}, g_{0}\right)=F\left(g_{0}, g_{1}\right)=F\left(g_{1}, g_{0}\right)=g_{1}$

How to Realize NAND Gate in Simple Groups

$\operatorname{NAND}\left(b_{1}, b_{2}\right)=0$ iff $b_{1}=b_{2}=1$
（Compositions of NAND yield AND，OR，NOT，．．．）
［Ostrovsky－Skeith 2008］For any non－commutative finite simple group G ，there exist $g_{0} \neq g_{1} \in G$ and $F: G^{2} \rightarrow G$ with：
－$F\left(g_{1}, g_{1}\right)=g_{0}$
－$F\left(g_{0}, g_{0}\right)=F\left(g_{0}, g_{1}\right)=F\left(g_{1}, g_{0}\right)=g_{1}$
－F is composed of group operations in G

How to Realize NAND Gate in Simple Groups

$\operatorname{NAND}\left(b_{1}, b_{2}\right)=0$ iff $b_{1}=b_{2}=1$
（Compositions of NAND yield AND，OR，NOT，．．．）
［Ostrovsky－Skeith 2008］For any non－commutative finite simple group G ，there exist $g_{0} \neq g_{1} \in G$ and $F: G^{2} \rightarrow G$ with：
－$F\left(g_{1}, g_{1}\right)=g_{0}$
－$F\left(g_{0}, g_{0}\right)=F\left(g_{0}, g_{1}\right)=F\left(g_{1}, g_{0}\right)=g_{1}$
－F is composed of group operations in G
（Proof idea：$\langle\text { commutators }\rangle_{\text {normal }}=G$ ）

Towards Homomorphically Hiding the Group

My recent（very rough）idea：

My recent（very rough）idea：
（1）Presentation of $G \times H$ by generators／relations

My recent（very rough）idea：
（1）Presentation of $G \times H$ by generators／relations
（2＂Shuffle＂presentation by randomly applying Tietze transformations

Towards Homomorphically Hiding the Group

My recent（very rough）idea：
－Presentation of $G \times H$ by generators／relations
－＂Shuffle＂presentation by randomly applying Tietze transformations
－Apply Knuth－Bendix completion algorithm，to yield normal form of each group element
－Otherwise，Enc is also hard－to－compute

Towards Homomorphically Hiding the Group

My recent（very rough）idea：
－Presentation of $G \times H$ by generators／relations
－＂Shuffle＂presentation by randomly applying Tietze transformations
－Apply Knuth－Bendix completion algorithm，to yield normal form of each group element
－Otherwise，Enc is also hard－to－compute
Current problems：
－Knuth－Bendix algorithm may not terminate
－Is it really secure？

How to Apply Topology，Hopefully

Goal：Hard－to－compute $\varphi: \widetilde{G} \xrightarrow{\text { hom．}} G$ with G and generators of $\operatorname{ker} \varphi$ public
－Easy－to－compute if secret key is known
－Message set is＂embedded＂into G

How to Apply Topology，Hopefully

Goal：Hard－to－compute $\varphi: \widetilde{G} \xrightarrow{\text { hom．}} G$ with G and generators of $\operatorname{ker} \varphi$ public
－Easy－to－compute if secret key is known
－Message set is＂embedded＂into G
Questions：

How to Apply Topology，Hopefully

Goal：Hard－to－compute $\varphi: \widetilde{G} \xrightarrow{\text { hom．}} G$ with G and generators of $\operatorname{ker} \varphi$ public
－Easy－to－compute if secret key is known
－Message set is＂embedded＂into G
Questions：
－Good \widetilde{G} ，associated to some topological object？ （Cf．groups from elliptic curves）

How to Apply Topology，Hopefully

Goal：Hard－to－compute $\varphi: \widetilde{G} \xrightarrow{\text { hom．}} G$ with G and generators of $\operatorname{ker} \varphi$ public
－Easy－to－compute if secret key is known
－Message set is＂embedded＂into G
Questions：
－Good \widetilde{G} ，associated to some topological object？ （Cf．groups from elliptic curves）
－Embedding into other topology－related objects？ （E．g．，quandles from knot theory）

